скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Частотно-модульовані сигнали скачать рефераты

p align="left">У такий спосіб в існуючих схемах ЧМ демодуляторів мають місце протиріччя між відношенням та величиною девіації частоти, а отже і смугою частот, яку займає сигнал. З ростом ширини спектру демодулюючого сигналу пропорційно зростає потужність шумів, а потужність корисного сигналу зменшується через зменшення крутизни характеристики демодулятора.

Вирішення даної проблеми забезпечується в запропонованій схемі частотного демодулятора (додаток Д).

Викривлення при детектуванні ЧМ коливань

Розглянемо викривлення при частотному детектуванні. Припустимо, що амплітуда вхідного коливання постійна. В цьому випадку викривлення можуть виникати з таких причин:

– за рахунок не лінійності перетворення ЧМ-АЧМ;

– за рахунок викривлення при амплітудному детектуванні;

– за рахунок відхилення частотних параметрів вхідного сигналу () від розрахункових значень.

Викривлення при перетворення ЧМ-АЧМ виникають внаслідок не лінійності робочої ділянки узагальненої характеристики. Ці перекручування оцінюють коефіцієнтом гармонік. Амплітуди гармонік визначають методом п'яти ординат за графіком узагальненої характеристики (рис. 2.14) [6].

27

Рисунок 2.14 - Графік узагальненої характеристики

Завдяки симетричності кривих г(у) відносно початку координат , вираз для розрахунку коефіцієнта гармонік спрощується [6]:

,(2.34)

де:

(2.35)

.(2.36)

Якщо амплітудні детектори лінійні, то нелінійні викривлення частотного детектора оцінюють тільки за узагальненою характеристикою. В іншому випадку, їх потрібно оцінювати за характеристикою частотного детектора, яку зручно отримати експериментально.

Викривлення за рахунок відхилення частотних параметрів вхідного сигналу від номіналу можна простежити за характеристикою частотного детектора (рис. 2.15) [3]. Ці викривлення мають дві основні причини:

– по-перше, якщо значно більше розрахункової, то невеликі викривлення переростають у двостороннє обмеження вихідного коливання з характерними провалами (рис. 2.15а);

– по-друге, якщо частота несучого коливання відрізняється від номінальної, тобто , то може з'явитися одностороннє обмеження. Крім того, не модульоване коливання буде викликати постійну напругу на виході (рис. 2.15б).

При сильному відхиленні та невеликій девіації може виникнути помилкове настроювання, при якому вихідна напруга за формою не викривлена (рис. 2.15б). Для помилкового настроювання характерна наявність постійної складової і зміна фази змінної напруги на виході. Якщо , то на вході з'являється викривлене коливання з подвійною частотою (рис. 2.15г).

27

Рисунок 2.15 - Характеристики частотних детекторів

Частотні детектори проектують так, щоб по можливості виключити сильні викривлення. Зазвичай, робочий (лінійний) інтервал характеристики частотного детектора вибирають приблизно рівним смузі пропускання підсилювача проміжної частоти.

Частотні детектори, призначені для систем авто підбору частоти, при вибирають сигнал , які використовуються для керування частотою гармонічних коливань в генераторах. В цьому випадку не потрібно, щоб детекторна характеристика була лінійною, але потрібна можливо більша крутизна на початку координат. Дослід на максимум при у = 0 показує, що оптимальним є значення .

Розглянуті вище викривлення можуть виникати при постійній амплітуді вхідного коливання. Якщо ж, по яким би то причинам (наприклад, при дії перешкод або завмиранні сигналу) амплітуда вхідного коливання змінюється, то ці зміни в результаті амплітудного детектування будуть відновлені на виході частотного детектора у вигляді викривлень корисного сигналу.

Розглянуті вище викривлення можуть виникати при постійній амплітуді вхідного коливання. Якщо ж, по яким би то причинам (наприклад, при дії перешкод або завмиранні сигналу) амплітуда вхідного коливання змінюється, то ці зміни в результаті амплітудного детектування будуть відновлені на виході частотного детектора у вигляді викривлень корисного сигналу.

Для того, щоб виключити такі викривлення створюють обмеження амплітуди детекторного коливання, тобто фіксують її величину на деякому постійному рівні. Це робиться в спеціальному обмежувачі, або в підсилювальному каскаді.

2.2 Використання частотних демодуляторів у техніці зв'язку

Тракт прийому сигналу ЧМ в радіоапаратурі

Частотна модуляція (ЧМ) знаходить широке застосування у радіо і радіорелейному зв'язку, це пояснюється наявністю переваг ЧМ в порівнянні з АМ. Застосування ЧМ дозволяє значно покращити використання потужності передавача, збільшити завадостійкість прийому сигналів, підвищити якісні показники приймача (динамічний діапазон, лінійність та ін.). найбільш повно ці переваги реалізуються при великих індексах частотної модуляції, що приводить до широкої смуги частот, які випромінює передавач. Внаслідок цього радіотелефонний зв'язок з ЧМ використовується на ультракоротких хвилях (метрових) тобто, де можливо реалізувати широкосмугові канали зв'язку.

При використанні ЧМ з'являється можливість здійснити багатоканальний зв'язок з високою завадостійкістю і ефективністю. З цією метою передавач радіолінії модулюється складним груповим сигналом, отриманим в підсумку модуляції ряду під несучих частот первинними модулюючими сигналами від відповідних джерел повідомлень. Таким чином здійснюється подвійна модуляція передавача. В якості первинної модуляції можна використовувати односмугову та частотну модуляцію, але частіше усього для звуження випромінюваного спектру використовується односмугова модуляція. Багатоканальний радіозв'язок з ЧМ знаходить широке використання при необхідності передачі дуже великого числа каналів. В цьому випадку особливо необхідно використовувати УКХ діапазон, так як у ньому відсутні вибіркові завмирання сигналів.

Приймачі одноканальних та багатоканальних передач з ЧМ мають багато спільного в побудові радіотракту.

Одноканальний, багатоканальний прийом мають ряд ідентичних блоків - загальний радіотракт, амплітудний обмежувач і частотний детектор.

Загальний радіотракт призначений забезпечувати необхідне підсилення і вибірковість приймача та рівня сигналу на виході обмежувача. Рівень сигналу на виході обмежувача повинен в декілька разів перевищувати поріг обмежувача. Для прийому ЧМ сигналів використовують в основному супергетеродинні приймачі, внаслідок цього радіотракт повинен забезпечувати подавлення побічних каналів прийому, вибірковість по сусідніх каналах прийому, багато-сигнальну вибірковість. Особливістю радіотракту приймача ЧМ сигналів є широка смуга пропускання і жорсткі вимоги до фазових характеристик. Враховуючи необхідність широкої смуги пропускання загального підсилення, а також неможливість забезпечити високий коефіцієнт підсилення в кожному каскаді (високі частоти ускладнюють радіотракт в порівнянні з приймачами АМ сигналів). Радіотракти одноканального та багатоканального приймачів відрізняються тільки величиною смуги пропускання і вимогами до фазових і частотних характеристик.

Амплітудний обмежувач призначений для усунення паразитної амплітудної модуляції сигналу. Можливість усунення паразитної амплітудної модуляції, яка виникає головним чином під дією перешкод, є однією з причин високої завадостійкості приймача ЧМ сигналів. Ефективність обмеження оцінюється коефіцієнтом обмеження, який показує у скільки разів глибина паразитної амплітудної модуляції сигналу на виході обмежувача менша, ніж на його вході.

Частотний детектор перетворює високочастотну модульовану по частоті напругу в напругу низької частоти, що відтворює закон модуляції. Таку ж задачу вирішує частотний детектор і в багатоканальному прийомі, однак в даному випадку на його виході отримують груповий сигнал, який потребує додаткової обробки раніше, ніж отримають вихідний низькочастотний сигнал. Схеми частотних детекторів і вимог до їх характеристик в залежності від параметрів радіосигналів і допустимих викривлень розглядаються в загальних радіотехнічних курсах. Можна відмітити, що при використанні дрібного детектора або детектора відхилення можна відмовитися від обмеження, так як такий детектор реагує на зміни амплітуди.

Після частотного детектора структурні схеми одноканальних та багатоканальних приймачів істотно відрізняються. В одноканальному приймачі за детектором слідує тракт підсилення коливань низької частоти. Цей тракт повинен мати смугу пропускання та інші характеристики такими, щоб забезпечувалися необхідні підсилення при мінімальних викривленнях сигналу. Вихідний рівень повинен забезпечувати нормальну роботу кінцевого пристрою. В багатоканальному приймачі після детектора зазвичай є груповий підсилювач, блок розподілу каналів по частоті, демодулятори каналів і канальні підсилювачі низької частоти. Груповий підсилювач призначений для підсилення групового сигналу, який включає в себе всі канали. Схема розподілу каналів забезпечує розфільтрування без взаємних перешкод між каналами.

Задачею демодуляторів є отримання низькочастотних спектрів каналів. В залежності від виду первинної модуляції сигналів демодулятори можуть представляти собою амплітудний детектор (при первинній АМ) і гетеродинний детектор (при односмуговій первинній модуляції). На виході кожного каналу ставиться підсилювач низької частоти, який виконує ті ж самі задачі, що і в одноканальному приймачі.

Загальний радіотракт відрізняється лише своїми параметрами, тому потрібно лише вміло вибрати ці параметри для забезпечення невикривленого прийому сигналів.

3. ШЛЯХИ ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ ЧАСТОТНИХ ДЕМОДУЛЯТОРІВ

В попередніх питаннях проведено детальний опис сигналу ЧМ та демодуляторів цього сигналу. Ширину спектру частотно-модульованого сигналу можна визначити за допомогою формули Манаєва [2]:

,(3.1)

більш точніше визначається за наступною формулою:

,(3.2)

де - максимально можлива частота напруги, що модулює;

- індекс частотної модуляції.

При девіації частоти 5 кГц та максимальній частоті первинного сигналу 3,4кГц ширина спектру сигналу ЧМ становить .

Виграш від застосування методів частотної модуляції пропорційний квадрату індексу частотної модуляції. Але зі збільшенням індексу частотної модуляції зростає ширина спектру модульованих сигналів. Отже, підвищення завадостійкості в системах з частотною модуляцією досягається завдяки розширенню їхнього спектру і збільшення, відповідно, смуги частот, яку займає канал зв'язку з розглянутим видом модуляції.

Варто звернути увагу на те, що значення узагальненого виграшу, який визначає потенційну завадостійкість каналів зв'язку з розглянутим видом модуляції, є справедливим лише для відносно слабких перешкод, для яких виконується нерівність .

У каналах зв'язку з частотною модуляцією приведена нерівність може виконуватися лише для визначеної області значень індексів модуляції, менших деяких критичних значень. При збільшенні значення індексів частотної модуляції ї зв'язаним з цим збільшенням ширини спектрів сигналів зменшується перевищення сигналу над перешкодою на вході демодулятора (детектора), що приводить до придушення сигналу перешкодою і зменшенню відношення сигналу до перешкоди на його виході.

При зменшенні відношення потужності сигналу до питомої інтенсивності перешкоди менше деякого граничного перевищення сигналу над перешкодою на виході приймача сигналів ЧМ (а отже, і його завадостійкості) різко зменшується. Граничне значення відношення збільшується зі збільшенням індексу модуляції, тому що при великому індексі модуляції (більш широкій смузі частот) перевищення сигналу над перешкодою на вході демодулятора зменшується.

Після проведення аналізу схем частотних детекторів ЧМ сигналів видно, що вони не можуть забезпечувати різну девіацію частоти, але з різною крутизною характеристик сигналу в співвідношенні сигналу до перешкоди. Для того, щоб краще отримувати сигнали, які передаються, використовують частотні демодулятори (детектори) з малою девіацією частот, а отже малим індексом модуляції.

Але постає проблема забезпечення передачі високошвидкісних потоків сигналів, а на даному етапі розвитку зв'язку використовують сигнали ЧМ . Для того, щоб забезпечити широкий спектр передачі сигналів ЧМ потрібно застосовувати засоби поліпшення. Отже, запропонуємо розроблену схему для забезпечення потрібної девіації частоти, не погіршуючи крутизни характеристики відношення сигналу до перешкоди. (Схема в додатку Д).

Амплітудний обмежувач призначений для забезпечення нормальної роботи частотного демодулятора, тому що амплітуда сигналу на виході повинна бути постійною. Він усуває, так звану, паразитну амплітудну модуляцію. Робота амплітудного обмежувача допускає, що рівень сигналу на вході в будь-якому випадку буде вище порогу обмеження.

Далі сигнал поступає на частотні демодулятори, зібрані паралельним каскадом, але налаштовані на певний діапазон частот. В частотному демодуляторі відбувається перетворення сигналу з частотною модуляцією в копію первинного сигналу. Спочатку відбувається демодуляція в частотному демодуляторі ЧД1. Після закінчення прийому сигналу на частоті, на яку налаштований демодулятор відбувається відключення і включення наступних демодуляторів, підключених паралельно до основного. Кількість демодуляторів не повинна бути меншою 3-х.

Для того, щоб перетворений сигнал не був загублений, він поступає в пристрій лінійного запам'ятовування амплітуди лінійної ділянки амплітудно-частотної характеристики частотного демодулятора. Після якого потрапляє на пристрій аналізу полярності напруги на виході частотного демодулятора і його зчитування. Це дає можливість проаналізувати амплітуду отриманого сигналу та зробити висновок формувачу команд управління комутаторами.

На керуючому комутаторі відбувається почергове зчитування амплітуди сигналу на суматор, в якому відбувається сумування лінійних ділянок характеристик сигналу, та подача на вихід прогумованого (складеного) сигналу.

Із графіку амплітудно-частотної характеристики видно, що на виході частотного демодулятора отримаємо потрібну лінійну ділянку амплітудно-частотної характеристики сигналу, при великому значенні девіації частоти.

Загальна ідея роботи запропонованого демодулятора (додатку Е) полягає в наступному: характеристикам демодулятора з заданою крутизною формується шляхом сумування лінійних ділянок детекторних характеристик n- паралельно включених частотних детекторів, кожний з яких забезпечує детектування визначеної частини смуги частот, яку займає спектр вхідного сигналу, для того щоб розбити загальну смугу частот на n - ділянок, а частоти настроювання детекторів вибираються рівними нижній граничній частоті кожної з цих ділянок.

Напруга з виходу амплітудного обмежувача надходить на входи паралельно з'єднаних основного ЧД1 та 2n допоміжних ЧД, частоти настроювання яких зміщені відносно ЧД1 на величину ( - номер допоміжного детектора). Напруга на відповідні лінійній ділянці записується елементами пам'яті на додатку Д позначені 2n. Вихідний сигнал з елементів пам'яті подається на входи схеми зчитування інформації (схема зчитування 3 використовується при формуванні позитивної гілки детекторної характеристики, а 3ґ негативної її гілки). З виходів схем зчитування з виходів основного і допоміжного детекторів формуючи гілку детекторної характеристики надходять на входи керованого комутатора 5, а з його виходу на вхід суматора 6. стан керованих комутаторів 5 і 5ґ, відповідно позитивної та негативної гілки детекторної характеристики, визначається сигналом з виходу схем керування 4 і 4ґ. При позитивній девіації частоти сигналом з виходу схеми керування 4 закривається керованим комутатором 5ґ, в результаті чого виключається надходження на вхід суматора 6 шумів з виходів допоміжних детекторів формуючи негативну галузь детекторної характеристики демодулятора.

При демодуляції сигналу з девіацією частоти, яка не перевищує , з детекторної характеристики ЧД1. При збільшенні девіації частоти, характеристика демодулятора формується з лінійної ділянки детекторної характеристики ЧД1, що запам'ятовується елементом пам'яті на його виході і лінійній ділянці детекторної характеристики допоміжного ЧД2. При подальшому збільшенні девіації частоти характеристика демодулятора взагалі формується шляхом підсумовування лінійних ділянок детекторних характеристик основного і допоміжних ЧД.

Страницы: 1, 2, 3, 4, 5