скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Частотно-модульовані сигнали скачать рефераты

Частотно-модульовані сигнали

27

1. ХАРАКТЕРИСТИКА ЧАСТОТНО МОДУЛЬОВАНИХ СИГНАЛІВ

1.1 Параметри частотно модульованих сигналів (девіація, коефіцієнт модуляції)

Загальний принцип частотної і фазової модуляції

Несуче коливання характеризується значенням своїх параметрів - амплітуди, кругової частоти і початкової фази . Модуляція виражається в зміні за законом первинного сигналу с(t) значень одного чи декількох параметрів коливання , що перепишемо у вигляді [1]:

,(1.1)

де - повна фаза гармонійного коливання.

Зміна кругової частоти чи початкової фази приводиться в остаточному підсумку до зміни повної фази (миттєвого кута) коливання (1.1). На цій підставі спосіб, заснований на зміні під впливом первинного сигналу с(t) чи частоти, чи початкової фази коливання носить назву кутова модуляція. З цього також випливає, що кутова модуляція, по-своєму способу здійснення, поділяється на частотну і фазову. Структурна схема каналів зв'язку з частотною модуляцією (ЧМ) зображена рис. 1.1 [1], де та сигнали з частотною модуляцією відповідно.

27

Рисунок 1.1 - Структурна схема каналу зв'язку з ЧМ

Одержимо аналітичні вирази для сигналів з ЧМ.

Загальне вираження сигналу з кутовою модуляцією має вигляд [1]:

,(1.2)

де повна фаза .

При частотній модуляції змінюється частота модульованого коливання за законом [5]:

,(1.3)

де - максимальне відхилення частоти від номінального значення частоти, що називається девіацією частоти; значення 2 іноді називають смугою коливання частоти.

Як відомо, зміна частоти викликає зміну початкової фази, пропорційної інтегралу від [1]:

.(1.4)

У свою чергу миттєва частота коливання змінюється за законом похідної від зміни фази [1]:

.(1.5)

Таким чином, при зміні частоти за законом (1.3) повна фаза модульованого коливання дорівнює [1]:

.(1.6)

І модульоване по частоті коливання одержує вид [1]:

.(1.7)

Коливання частотною модуляцією можна представити загальною формулою коливань з кутовою модуляцією [1]:

,(1.8)

де - при частотній модуляції.(1.9)

Частотна модуляція

Сигнал з частотною модуляцією відноситься до інтегрованих систем модуляції і виражається [1]

.(1.10)

Шляхом звичайних перетворень отримаємо [1]:

;(1.11)

;

.(1.12)

Спектральна щільність і середня потужність перешкоди на виході ідеального приймача сигналів ЧМ виражаються, таким чином [1]:

;(1.13)

е2=;(1.14)

Отже, перевищення сигналу над перешкодою на виході ідеального приймача сигналів ЧМ дорівнює [1]:

.(1.15)

Середня потужність сигналу ЧМ дорівнює .

При цьому узагальнений виграш дорівнює [1]

(1.16)

(1.17)

1.2 Ширина спектру частотно модульованого коливання в залежності від коефіцієнта модуляції

Перепишемо коливання у вигляді [5]:

,(1.18)

при цьому прийнято ц0=0, від значення якої форма енергетичного спектру не залежить.

Функція автокореляції коливання з кутовою модуляцією дорівнює [5]:

(1.19)

Позначивши

Отримаємо [1]:

,(1.20)

де - нормована функції автокореляції .

Таким чином, енергетичний спектр коливання з кутовою модуляцією[5]:

(1.21)

чи

, (1.22)

де - енергетичний спектр, що відповідає функції автокореляції .

Аналізуючи отримані вирази, легко прийти до висновку про те, що спектр коливання з кутовою модуляцією, так само як спектр сигналу АМ, має дві симетричні щодо середньої частоти щ0 бічні смуги частот (рис. 1.2) [1].

27

Рисунок 1.2 - Енергетичний спектр сигналу з кутовою модуляцією

Як видно, функція зв'язана складною залежністю з моделюючою функцією с(t). Тому що обчислення спектру коливання з кутовою модуляцією для випадкової моделюючої функції с(t) сполучено зі значними математичними труднощами, тому обмежимося дослідженням спектрів сигналів з частотною модуляцією для найпростішої форми первинного сигналу с(t)=cosЩt у вигляді гармонійного низькочастотного коливання (модуляція одним тоном).

Сигнали з частотною модуляцією одним тоном виражаються формулами [2]:

,(1.23)

де - індекс частотної модуляції.

Індекс модуляції має фізичний сенс максимального збільшення початкової фази модульованого коливання. Користуючись співвідношенням з тригонометрії, отримаємо для частотної модуляції [1]:

.(1.24)

Скористаємося співвідношеннями з теорії Бесселевих функцій [1]:

,(1.25)

,(1.26)

де - функція Бесселя першого роду n-го порядку від аргументу .

Після підстановки і відповідних елементарних перетворень одержуємо:

чи

(1.27)

Тому що

, (1.28)

де =3р/2 - постійна початкова фаза.

Для шm=5 амплітудний спектр сигналу з кутовою модуляцією показаний на рис. 1.3 [1]. Форма спектру коливання з кутовою модуляцією істотно залежить від індексу модуляції шm.

У загальному випадку спектр коливання з кутовою модуляцією є більш складним, ніж спектр коливання з амплітудною модуляцією, зокрема, теоретично він є необмежено широким.

27

Рисунок 1.3 - Спектр сигналу з кутовою модуляцією

Однак можна помітити, що складовими спектру з номерами n > шm через малу їхню інтенсивність можна зневажити. У цьому випадку ширина спектру сигналу з кутовою модуляцією визначається співвідношенням [1]:

,(1.29)

де - частота моделюючого коливання.

Більш строго ширину спектру коливання з кутовою модуляцією вимірюють (і практично обмежують у каналах зв'язку) як інтервал між верхньою і нижньою бічними частотами (розташованими симетрично щодо середньої частоти щ0), амплітуди яких складають визначену частину від максимальної амплітуди коливання на деякій бічній частоті. Номер n бічних граничних частот при цьому визначається з рівності [2]:

.(1.30)

Оцінкою ширини спектру сигналів з кутовою модуляцією формулою (1.19) можна користуватися при досить великих значеннях індексу модуляції ().

Відповідно до формули (1.19) для сигналів з частотною модуляцією маємо [2]:

,(1.31)

де - максимальне відхилення (девіація) частоти, так як [6]

.(1.32)

Таким чином, при великих індексах модуляції ширина спектру сигналів із ЧМ дорівнює приблизно подвоєному значенню девіації частоти.

Кутова модуляція з великими індексами () називається широкосмуговою.

При малих значеннях індексу модуляції () можна скористатися наближеними значеннями тригонометричних функцій:

,

У цьому випадку відповідно до формули (1.17) [1]

. (1.33)

У розглянутому випадку спектр сигналів з кутовою модуляцією збігається зі спектром сигналу з амплітудною модуляцією. Дійсно, вираз можна привести до вигляду [1]:

.(1.34)

Якщо прийняти = m, то .

Кутова модуляція з малим індексом модуляції () може бути названа вузькосмуговою. Ширина спектру вузько смугових сигналів з кутовою модуляцією визначається наступною наближеною формулою (як і при амплітудній модуляції) [2]:

,(1.35)

де - максимальна частота модулюючого сигналу с(t).

Загальна оцінка методу частотної модуляції

Однією з основних особливостей методу частотної модуляції (у порівнянні з амплітудною) є певне використання потужності передавача, не залежне від структури повідомлення, яке передається (від значення його пік-фактора). У цілому, метод частотної модуляції є більш завадостійким, ніж метод амплітудної модуляції. При достатньому перевищенні сигналу над перешкодою в каналі зв'язку завадостійкість методу частотної модуляції зростає зі збільшенням індексу частотної модуляції. Ця властивість знаходить безпосередню реалізацію в широкосмугових системах зв'язку з частотною модуляцією.

2. ПОРІВНЯЛЬНА ОЦІНКА ЗАВАДОСТІЙКОСТІ ЧМ СИГНАЛІВ ПРИ РІЗНИХ КОЄФІЦІЄНТАХ МОДУЛЯЦІЇ

Мінімально потенційною завадостійкістю володіє метод амплітудної модуляції. Методи балансної й односмугової модуляції забезпечують однаковий узагальнений виграш.

Виграш від застосування методу частотної модуляції пропорційний квадрату індексу () частотної модуляції. Але зі збільшенням індексу частотної модуляції росте ширина спектру модульованих сигналів. Отже, підвищення завадостійкості в системах з кутовою (частотною) модуляцією досягається завдяки розширенню їхнього спектру і збільшення, відповідно, смуги частот, яку займає канал зв'язку з розглянутими видами модуляції.

Варто звернути увагу також на те, що приведені вище значення узагальнених виграшів, що визначають потенційну завадостійкість каналів зв'язку з розглянутими видами модуляції, є справедливими лише для відносно слабких перешкод, для яких виконується нерівність h2 >1.

У каналах зв'язку з кутовою модуляцією приведена нерівність може виконуватися лише для визначеної області значень індексів модуляції <, менших деяких критичних значень. При збільшенні значень індексів кутової модуляції і зв'язаним з цим збільшенням ширини спектрів сигналів зменшується перевищення сигналу над перешкодою на вході демодулятора (детектора), що приводить до придушення сигналу перешкодою і зменшенню відношення сигналу до перешкоди на його виході.

Сказане ілюструється залежностями, зображеними в дод.Б. При зменшенні відношення потужності сигналу до питомої інтенсивності перешкоди менше деякого граничного ()пор перевищення сигналу над перешкодою на виході приймача сигналів ЧМ (а отже, і його завадостійкості) різко зменшується. Граничне значення відношення ()пор збільшується зі збільшенням індексу модуляції, тому що при великому значенні індексу модуляції (більш широкій смузі частот) перевищення сигналу над перешкодою на вході демодулятора зменшується.

Наближено граничне значення відношення можна визначити з умови , звідки [4]:

,(2.1)

де FS - пропорційна індексу модуляції.

З рівності (2.1) можна перейти до безрозмірної величини [4]:

.(2.2)

Серед розглянутих видів модуляції найбільш широке застосування в практиці радіозв'язку одержали методи амплітудної модуляції (як технічно найбільш прості), одно смугової модуляції (через високу завадостійкість та мінімальну смугу частот, яку займає канал зв'язку) і частотної модуляції з відносно малим індексом модуляції (порядку одиниць), при якому потрібна менша потужність сигналу на вході приймача для забезпечення умови .

Прийом сигналів ЧМ. Структурна схема приймача з частотною модуляцією зображена на рис. 2.1. [1]. Обмежувач призначений для усунення паразитної амплітудної модуляції, викликаною перешкодою.

27

Рисунок 2.1 - Структурна схема приймача з ЧМ

Запишемо сигнал ЧМ [1]:

,(2.3)

де кругова частота змінюється відповідно до закону модуляції її сигналом х(t), і перешкоду [1]:

.(2.4)

Для деякого фіксованого моменту часу сигнал і перешкода зображені векторною діаграмою на рис. 2.2 [1]. Як видно, перешкода викликає випадкові зміни як амплітуди, так і початкової фази прийнятого сигналу.

27

Рисунок 2.2 - Векторна діаграма сигналу ЧМ та перешкоди

Якщо обмежувач має поріг , то паразитні зміни амплітуди прийнятого коливання Z(t) будуть усунуті. Однак викликані перешкодою випадкові відхилення початкової фази сигналу приводять до його перекручувань. Вони створюють так звану паразитну частотну (кутову) модуляцію прийнятого сигналу і відповідний їй шум (перешкоду) на виході частотного детектора.

Максимальне відхилення початкової фази називають індексом частотної модуляції , що визначається зі співвідношення [1]:

.(2.5)

При (слабкі перешкоди) значення синуса можна замінити значенням його аргументу і тоді ? .

Виділимо (рис. 2.3) [1] елементарну ділянку у смузі частот ДF приймача, що дорівнює ширині спектру прийнятого ЧМ сигналу. Перешкода, діючи в цій смузі частот, викликає максимальне відхилення (девіацію) частоти.

,(2.6)

де .

27

Рисунок 2.3 - Графічне пояснення методу визначення потужності перешкоди на виході ЧМ детектора

Потужність шуму, викликаного елементарною перешкодою на виході частотного детектора, пропорційна квадрату девіації частоти [1]:

(2.7)

(коефіцієнт пропорційності прийнятий рівним одиниці).

Повна потужність перешкоди, що створюється всіма елементарними перешкодами на виході детектора в смузі частот , дорівнює [4]:

.(2.8)

Потужність сигналу на виході приймача пропорційна квадрату девіації частоти сигналу ЧМ [4]:

.(2.9)

Таким чином, перевищення сигналу над перешкодою на загальному виході схеми (рис. 2.1) дорівнює [4]:

,(2.10)

де .

Зіставляючи отриманий результат з перевищенням сигналу над перешкодою на виході ідеального приймача, переконуємося, що вони збігаються.

Таким чином, при відносно малому рівні перешкод () на вході обмежувача і прямокутній формі частотних характеристик ВЧ і НЧ приймач за схемою рис. 2.1 практично цілком реалізує потенційну завадостійкість.

Однією з найбільш актуальних задач у техніці радіоприйому сигналів ЧМ є боротьба з граничним явищем, що обмежує максимальне значення індексу частотної модуляції.

Рішення цієї задачі повинне зводитися в остаточному підсумку до забезпечення перевищення сигналу над перешкодою на вході частотного детектора вище граничного.

Один із технічних способів рішення цієї задачі полягає в застосування фільтра, що стежить. Схема приймача сигналів ЧМ із застосуванням такого фільтру зображена на рис. 2.4 [1].

27

Рисунок 2.4 - Структурна схема приймача із фільтром, що стежить

Миттєві зміни частоти прийнятого ЧМ сигналу викликають пропорційні збільшення напруги на виході частотного детектора. За допомогою реактивного елемента, на який через ланцюг зворотного зв'язку подається напруга з виходу частотного детектора, змінюється настроювання підсилювачів тракту ПЧ відповідно до прийнятого коливання.

Точність спостереження, а отже, і досяжне зменшення смуги пропускання приймача обмежуються наявністю факторів технічного характеру, а також впливом перешкод. При практично реалізованій точності спостереження вдається отримати значення смуги пропускання фільтра, що стежить, , тобто практично рівне смузі, необхідної для прийому АМ сигналів.

Тому що при смуга пропускання звичайного приймача , то можливість звуження смуги пропускання й зменшення граничного перевищення сигналу над перешкодою оцінюється співвідношенням [2]:

.(2.11)

Аналогічній схемі з фільтром, що стежить, є схема, зображена на рис. 2.5 [1], що реалізує метод зворотного зв'язку по частоті.

27

Рисунок 2.5 - Схема прийому сигналів ЧМ зі зворотним зв'язком

На схемі напруга з ЧД через реактивний елемент впливає на частоту приймача і змінює її в тому ж напрямку, в якому змінюється і частота сигналу, чим забезпечується можливість, як і в схемі з фільтром, що стежить, зменшити смугу пропускання тракту ПЧ. Ясно, що застосування фільтра, що стежить, чи методу зворотного зв'язку по частоті може лише наблизити завадостійкість реальних приймачів до потенційного, обумовленого сигналу над перешкодою (1.16), що неможливо перевершити.

Страницы: 1, 2, 3, 4, 5