скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Проблемы информационной безопасности банков - (диплом) скачать рефераты

p>В случае выхода из строя отдельных элементов системы другие могут взять на себя их функции. Времени на приведение дублирующих элементов в рабочее состояние очень мало, фактически оно определяется загрузкой из резервных копий (так как аппаратура расщепленного резерва всегда находится в рабочем состоянии). Такой способ обеспечения непрерывной работы и восстановления очень эффективен, так как позволяет быстро осуществлять переход с основных элементов АСОИБ на дублирующие. Более того, этот переход может быть практически незаметен для пользователей за исключением возрастания нагрузки на отдельные элементы. Однако при использовании “расщепленного резерва” возникает множество проблем, основными из которых являются:

1. Определение критической нагрузки. Распределение аппаратуры, программ и данных по элементам всей АСОИБ таким, чтобы обеспечить оптимальное дублирование и восстановление данных и процесса их обработки в различных ситуациях. Существующие математические методы позволяют рассчитывать оптимальную критическую нагрузку для каждого конкретного случая.

2. Обеспечение безопасности. При распределении программ и данных по различным элементам системы неизбежно увеличивается вероятность различных нарушений. Эта вероятность повышается в критических случаях, когда информация может обрабатываться на других элементах системы, возможно, с нарушением безопасности. В этом случае необходимо разрабатывать политику безопасности и составлять планы с учетом возможных опасных ситуаций и реакции на них. “Холодный резерв” используется для возобновления процесса обработки после серьезных, нанесший большой ущерб событий, которые привели к полному выходу системы из строя пожара, наводнения и т. д. Время на восстановление в этом случае может исчисляться неделями и месяцами. Естественно, это слишком большой срок, чтобы позволить себе обходиться без обработки информации. “Холодный резерв” представляет собой резервную систему обработки данных, которая не участвует в повседневной деятельности организации. Резервная система поставляется определенными фирмами (по заранее согласованной договоренности) в течение короткого промежутка времени (24 часа). Так же оперативно выполняются пуско-наладочные работы, после чего резервная система готова принять на себя функции основной.

В результате подобных мероприятий перерыв в работе АСОИБ в результате полного и необратимого выхода ее из строя будет исчисляться днями, а не неделями и месяцами. В то же время, покупка и установка резервной системы—дело дорогое, к тому же она не сможет принять на себя все функции основной, а только некоторую их часть. Поэтому “холодный резерв” целесообразно использовать для возобновления выполнения наиболее важных операций.

В том случае, когда размер ущерба невелик, система серьезно не пострадала, то наилучшим способом может быть отсутствие экстренных действий и продолжение работы.

Важным понятием политики безопасности является избирательная политика безопасности

Основой избирательной политики безопасности является избирательное управление доступом (ИУД), которое подразумевает, что:

- все субъекты и объекты системы должны быть идентифицированы; - права доступа субъекта к объекту системы определяются на основании некоторого внешнего (по отношению к системе) правила (свойство избирательности). Для описания свойств избирательного управления доступом применяется модель системы на основе матрицы доступа (МД, иногда ее называют матрицей контроля доступа). Такая модель получила название матричной.

Матрица доступа представляет собой матрицу, в которой объекту системы соответствует столбец, а субъекту—строка. На пересечении столбца и строки матрицы указывается тип (типы) разрешенного доступа субъекта к объекту. Обычно выделяют такие типы доступа субъекта к объекту как “доступ на чтение”, “доступ на запись”, “доступ на исполнение” и др.

Множество объектов и типов доступа к ним субъекта может изменяться в соответствии с некоторыми правилами, существующими в данной системе. Определение и изменение этих правил также является задачей ИУД. Например, доступ субъекта к конкретному объекту может быть разрешен только в определенные дни (дата-зависимое условие), часы (время-зависимое условие), в зависимости от других характеристик субъекта (контекстно-зависимое условие) или в зависимости от характера предыдущей работы. Такие условия на доступ к объектам обычно используются в СУБД. Кроме того, субъект с определенными полномочиями может передать их другому субъекту (если это не противоречит правилам политики безопасности).

Решение на доступ субъекта к объекту принимается в соответствии с типом доступа, указанным в соответствующей ячейке матрицы доступа. Обычно, избирательное управление доступом реализует принцип “что не разрешено, то запрещено”, предполагающий явное разрешение доступа субъекта к объекту. Матрица доступа —наиболее примитивный подход к моделированию систем, который, однако, является основой для более сложных моделей, наиболее полно описывающих различные стороны реальных АСОИБ.

Вследствие больших размеров и разреженности МД хранение полной матрицы представляется нецелесообразным, поэтому во многих средствах защиты используют более экономные представления МД (профили). Каждый из этих способов представления МД имеет свои достоинства и недостатки, обуславливающие область их применения. Поэтому в каждом конкретном случае надо знать, во-первых, какое именно представление использует средство защиты, и, во-вторых, какие особенности и свойства имеет это представление.

Основу полномочной политики безопасности составляет полномочное управление доступом, которое подразумевает, что:

- все субъекты и объекты системы должны быть однозначно идентифицированы; - каждому объекту системы присвоена метка критичности, определяющая ценность содержащейся в нем информации;

- каждому субъекту системы присвоен уровень прозрачности, определяющий максимальное значение метки критичности объектов, к которым субъект имеет доступ.

В том случае, когда совокупность меток имеет одинаковые значения, говорят, что они принадлежат к одному уровню безопасности. Организация меток имеет иерархическую структуру и, таким образом, в системе можно реализовать иерархически ненисходящий (по ценности) поток информации (например, от рядовых исполнителей к руководству). Чем важнее объект или субъект, тем выше его метка критичности. Поэтому наиболее защищенными оказываются объекты с наиболее высокими значениями метки критичности.

Каждый субъект кроме уровня прозрачности имеет текущее значение уровня безопасности, которое может изменяться от некоторого минимального значения до значения его уровня прозрачности.

Для моделирования полномочного управления доступом используется модель Белла-Лападула [2, с. 159], включающая в себя понятия безопасного (с точки зрения политики) состояния и перехода. Для принятия решения на разрешение доступа производится сравнение метки критичности объекта с уровнем прозрачности и текущим уровнем безопасности субъекта. Результат сравнения определяется двумя правилами: “простым условием защиты” и “свойством”. В упрощенном виде, они определяют, что информация может передаваться только “наверх”, то есть субъект может читать содержимое объекта, если его текущий уровень безопасности не ниже метки критичности объекта, и записывать в него, - если не выше. Простое условие защиты гласит, что любую операцию над объектом субъект может выполнять только в том случае, если его уровень прозрачности не ниже метки критичности объекта.

Основное назначение полномочной политики безопасности —регулирование доступа субъектов системы к объектам с различным уровнем критичности и предотвращение утечки информации с верхних уровней должностной иерархии на нижние, а также блокирование возможных проникновении с нижних уровней на верхние. При этом она функционирует на фоне избирательной политики, придавая ее требованиям иерархически упорядоченный характер (в соответствии с уровнями безопасности).

Изначально полномочная политика безопасности была разработана в интересах минобороны США для обработки информации с различными грифами секретности. Ее применение в коммерческом секторе сдерживается следующими основными причинами :

- отсутствием в коммерческих организациях четкой классификации хранимой и 'обрабатываемой информации, аналогичной государственной классификации (грифы секретности сведений);

- высокой стоимостью реализации и большими накладными расходами. Помимо управления доступом субъектов к объектам системы проблема защиты информации имеет еще один аспект. Чтобы получить информацию о каком-либо объекте системы, вовсе не обязательно искать пути несанкционированного доступа к нему. Можно получать информацию, наблюдая за работой системы и, в частности, за обработкой требуемого объекта. Иными словами, при помощи каналов утечки информации. По этим каналам можно получать информацию не только о содержимом объекта, но и о его состоянии, атрибутах и др. в зависимости от особенностей системы и установленной защиты объектов. Эта особенность связана с тем, что при взаимодействии двух субъектов возникает некоторый поток информации от одного к другому.

Информационные потоки существуют в системе всегда. Поэтому возникает необходимость определить, какие информационные потоки в системе являются “легальными”, то есть не ведут к утечке информации, а какие - ведут. Таким образом, возникает необходимость разработки правил, регулирующих управление информационными потоками в системе.

Для этого необходимо построить модель системы, которая может описывать такие потоки. Такая модель называется потоковой [2, с. 176]. Модель описывает условия и свойства взаимного влияния (интерференции) субъектов, а также количество информации, полученной субъектом в результате интерференции. Управление информационными потоками в системе не есть самостоятельная политика, так как оно не определяет правил обработки информации. Управление информационными потоками применяется обычно в рамках избирательной или полномочной политики, дополняя их и повышая надежность системы защиты. Управление доступом (избирательное или полномочное) сравнительно легко реализуемо (аппаратно или программно), однако оно неадекватно реальным АСОИБ из-за существования в них скрытых каналов. Тем не менее управление доступом обеспечивает достаточно надежную защиту в простых системах, не обрабатывающих особо важную информацию. В противном случае средства защиты должны дополнительно реализовывать управление информационными потоками. Организация такого управления в полном объеме достаточна сложна, поэтому его обычно используют для усиления надежности полномочной политики: ненисходящие (относительно уровней безопасности) информационные потоки считаются разрешенными, все остальные— запрещенными.

Отметим, что кроме способа управления доступом политика безопасности включает еще и другие требования, такие как подотчетность, гарантии и т. д. Избирательное и полномочное управление доступом, а также управление информационными потоками— своего рода три кита, на которых строится вся защита.

    Глава 5. Безопасность компьютерных сетей в банке.
    Классификация сетей.

Сети компьютеров имеют множество преимуществ перед совокупностью отдельных систем, в их числе следующие:

    * Разделение ресурсов.

Пользователи сети могут иметь доступ к определенным ресурсам всех узлов сети. В их числе, например, наборы данных, свободная память на удаленных узлах, вычислительная мощность удаленных процессоров и т. д. Это позволяет экономить значительные средства за счет оптимизации использования ресурсов и их динамического перераспределения в процессе работы. * Повышение надежности функционирования системы. Поскольку сеть состоит из совокупности отдельных узлов, то в случае сбоя на одном или нескольких узлах другие узлы смогут взять на себя их функции. При этом пользователи могут даже и не заметить этого- перераспределение задач возьмет на себя программное обеспечение сети.

    * Распределение загрузки.

В сетях с переменным уровнем загруженности имеется возможность перераспределять задачи с одних узлов сети (с повышенной нагрузкой) на другие, где имеются свободные ресурсы. Такое перераспределение может производиться динамически в процессе работы, более того, пользователи могут даже и не знать об особенностях планирования задач в сети. Эти функции может брать на себя программное обеспечение сети.

    * Расширяемость.

Сеть может быть легко расширена за счет добавления новых узлов. При этом архитектура практически всех сетей позволяет легко адаптировать сетевое программное обеспечение к изменениям конфигурации. Более того, это может производиться автоматически.

Однако с точки зрения безопасности эти достоинства превращаются в уязвимые места, порождая серьезные проблемы.

Особенности работы в сети определяются ее двойственным характером: с одной стороны, сеть следует рассматривать как единую систему, а с другой, - как совокупность независимых систем, каждая из которых выполняет свои функции; имеет своих пользователей. Эта же двойственность проявляется в логическом и физическом восприятии сети: на физическом уровне взаимодействие отдельных узлов осуществляется с помощью сообщений различного вида и формата, которые интерпретируются протоколами. На логическом уровне (т. е. сточки зрения протоколов верхних уровней) сеть представляется как совокупность функций, распределенных по различным узлам, но связанных в единый комплекс. Сети подразделяются: [8, с. 4-7]

1 По топологии сети (классификация по организации физического уровня). * Общая шина.

Все узлы соединены с общей высокоскоростной шиной передачи данных. Они одновременно настроены на прием сообщения, но каждый узел может принять только то сообщение, которое предназначено ему. Адрес идентифицируется контроллером сети, при этом в сети может быть только один узел с заданным адресом. Если два узла одновременно заняты передачей сообщения (столкновение пакетов), то один из них или они оба ее прекращают, ожидают случайный интервал времени, затем возобновляют попытку передачи (метод разрешения конфликтов). Возможен другой случай—в момент передачи каким-либо узлом сообщения по сети, другие узлы начать передачу не могут (метод предотвращения конфликтов). Такая топология сети является очень удобной: все узлы являются равноправными, логическое расстояние между любыми двумя узлами равно 1, скорость передачи сообщений велика. Впервые организация сети “общая шина” и соответствующие протоколы нижних уровней были разработаны совместно компаниями DIGITAL и Rank Xerox, она получила название Ethernet. * Кольцо.

Сеть построена в виде замкнутого контура однонаправленных каналов между станциями. Каждая станция принимает сообщения по входному каналу, в начале сообщения содержится адресная и управляющая информация. На основании ее станция принимает решение сделать копию сообщения и убрать его из кольца либо передать по выходному каналу на соседний узел. Если в настоящий момент не передается никакого сообщения, станция сама может передать сообщение.

В кольцевых сетях используется несколько различных способов управления: - гирляндная —управляющая информация передается по отдельным совокупностям (цепям) компьютеров кольца;

- управляющий маркер —управляющая информация оформляется в виде определенного битового шаблона, циркулирующего по кольцу; только при получении маркера станция может выдать сообщение в сеть (наиболее известный способ, получивший название token ring); - сегментная — по кольцу циркулирует последовательность сегментов. Обнаружив пустой, станция может поместить в него сообщение и передать в сеть; - вставка регистров — сообщение загружается в регистр сдвига и передается в сеть когда кольцо свободно. * Звезда.

Сеть состоит из одного узла-концентратора и нескольких соединенных с ним терминальных узлов, непосредственно между собой несвязанных. Один или несколько терминальных узлов могут являться концентраторами другой сети, в этом случае сеть приобретает древовидную топологию.

Управление сетью полностью осуществляется концентратором; терминальные узлы могут связываться между собой только через него. Обычно на терминальных узлах выполняется лишь локальная обработка данных. Обработка данных, имеющих отношение ко всей сети, осуществляется на концентраторе. Она носит название централизованной. Управление сетью обычно осуществляется с помощью процедуры опроса: концентратор через определенные промежутки времени опрашивает по очереди терминальные станции - есть ли для него сообщение. Если есть терминальная станция передает сообщение на концентратор, если нет осуществляется опрос следующей станции. Концентратор может передать сообщение одному или нескольким терминальным станциям в любой момент времени. 2. По размерам сети:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20