скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Оценка качества монтажных соединений электронной аппаратуры скачать рефераты

p align="left">Медь растворяется в олове и свинце в пренебрежимо малых количествах. Вместе с тем она дает с оловом два интерметаллических соединения (орторомбические Си2Sn и Си6Sn5). Эти соединения существуют при комнатных температурах и при микрографическом исследовании легко обнаруживаются в виде гексагональных игл, плавающих в припое.

По-видимому, мышьяк не дает твердых растворов ни с оловом, ни со свинцом. На микроструктурах можно наблюдать длинные иглы интерметаллических соединений SnАs2 и SnАs. Так как при пайке узлов электронного оборудования источники попадания мышьяка в ванну отсутствуют, то данный элемент, вряд ли может создавать трудности, связанные с его захватом. В сырье количество мышьяка строго контролируется.

Никель ни с оловом, ни со свинцом твердых растворов не дает. Однако никель образует с оловом три интерметаллических соединения (Ni3Sn, Ni3Sn2 и Ni3Sn4). Имеются данные о том, что сера ухудшает смачивание и считается опасной уже в количестве 0,03%. Серу иногда можно вывести из расплава, добавляя в него нашатырь, после чего ванна снова пригодна для пользования. Однако в высококачественном припое количество серы не должно превышать нескольких частей на миллион.

Ни со свинцом, ни с оловом серебро твердых растворов не дает; имеются два интерметаллических соединения серебра с оловом (Аg6Sn и Аg3Sn).

При содержании до нескольких процентов серебро в оловянно-свинцовых припоях не считается примесью; при более значительном количестве этого металла припой может загустевать, давая на паяемых поверхностях небольшие бугорки.

Серебро обычно добавляют в припои для пайки серебреной керамики или других тонких слоев этого металла, чтобы предотвратить уход серебра из таких слоев. Если количество серебра в припое превышает 2%, то при охлаждении ванны в ней будет оседать интерметаллическое соединение серебра с оловом, которое удаляют тем же способом, какой был описан для меди.

В олове при комнатной температуре растворяется 6-8% сурьмы, в свинце же при этих температурах растворимость сурьмы мала. Небольшие (до 0,3 %) добавки сурьмы улучшают смачиваемость припоя, в то время как добавки большего количества, постепенно ухудшают смачиваемость. Сурьму используют для того, чтобы затормозить переход олова в его серую модификацию, иногда называемую оловянной чумой. В соответствии с некоторыми государственными стандартами присутствие сурьмы в припое обязательно. Во многих припоях специального назначения сурьма присутствует в сравнительно больших количествах. Проблемы загрязнения припоя сурьмой несущественны, так как ее попадание в расплав маловероятно.

Цинк почти не растворим в твердом олове и, видимо, совсем не растворяется в свинце. Ни с одним из этих компонентов припоя цинк твердых растворов не дает. Имеются сообщения о том, что цинк резко ухудшает свойства припоя. По опубликованным данным уже в количестве 0,005% цинк приводит к недостаточному сцеплению, зернистости и склонности к разрушению припоя во время затвердевания. В электронном оборудовании цинк встречается редко.

На рисунке 1.2 показано влияние окислов и газовых включений на припой. В обычном прутке на поверхности видно сравнительно большое количество окисных включений и обесцвеченных пятен; на поверхности отмечаются также сильная пористость и газовые карманы. Образец припоя вакулой (припой переплавленный в вакууме для удаления газовых включений) имеет блестящую поверхность, газовые карманы отсутствуют.

Рисунок 1.2 - Влияние обезгаживания на припой

Сплав одинаковых количеств олова и свинца должен иметь в основном богатую свинцом фазу б в сетке эвтектического состава. Такая структура действительно наблюдается в прутке обычного припоя в состоянии после отливки. Однако при том же увеличении в литом прутке припоя вакулой наблюдается существенно дендритная структура фазы б внутри эвтектической сетки. Данное явление можно объяснить наличием или отсутствием центров кристаллизации внутри охлаждающейся жидкости; в одном случае - в обычном образце - это приводит к возникновению многочисленных небольших кристалликов вокруг большого количества окислов и включений, а в другом - в припое вакулой - к образованию гораздо меньшего числа крупных кристаллов чистого металла.

Таким образом, с чисто научной точки зрения сплав вакулой представляет собой свободный от окислов и газовых включений материал с меньшим количеством центров кристаллизации. Установлено, что он обладает более высокой смачиваемостью для большого числа основных металлов и при затвердевании дает более гладкую и блестящую поверхность. В промышленности этот припой в ряде случаев снизил количество брака на 90 %, позволил получать соединения меньшей толщины и улучшить профиль детали, облегчил контроль соединений; кроме того, внедрение данного припоя привело к одному очень важному побочному эффекту - возможности получить из 1 кг припоя большее число соединений. Ввиду высокой чистоты и малого содержания неметаллических окислов сплав вакулой в производстве получается более стабильным по свойствам и дает более однородные результаты уже при первоначальной плавке.

Особое влияние на свойства припоя оказывают интерметаллические соединения. Приводятся экспериментальные данные по влиянию примесей и присадок на микроструктуру эвтектического оловянно-свинцового припоя. Проводились исследования образующихся в припое интерметаллических соединений и их влияние на микроструктуру сплава, были проведены эксперименты, в ходе которых в эвтектический оловянно-свинцовый припой 63/37 вводилось 15% (по весу) основных присадок и загрязнений. Ниже приводится краткое описание возникавших микроструктур.

На микроструктуре (рисунок 1.3) ясно видна выделяющаяся богатая золотом фаза, принимающая форму пластинчатых кристаллов и представляющая собой золото-оловянный интерметаллид. Кроме того, между золотом и свинцом, который затвердевает вокруг богатых; золотом кристаллических участков, наблюдается вторичная эвтектическая фаза. Наконец, возникает оловянно-свинцовая фаза, имеющая на фотографии более темный цвет.

Рисунок 1.3 - Сплав оловянно-свинцовой эвтектики с 15 % золота; 200

На микроструктуре (рисунок 1.4) видна типичная дендритная структура кадмиевой фазы (содержащей в твердом растворе олово) с сеткой из оловянно-свинцовой эвтектики, включающей в себя некоторое количество б-фазы.

Рисунок 1.4 - Сплав оловянно-свинцовой эвтектики с 15 % кадмия; 200

Светлоокрашенные орторомбические кристаллы медно-оловянного интерметаллида (рисунок 1.5) располагаются в сетке из мелких кристаллов оловянно-свинцовой эвтектики с четкими участками б-фазы, богатой свинцом. Если тигель с припоем, в который введено большое количество меди, охладить до 188 °С и удалить шлам, то образуются игольчатые кристаллы, видимые невооруженным глазом.

Рисунок 1.5 - Сплав оловянно-свинцовой эвтектики с 15 % меди; 200

Образуются (рисунок 1.6) гексагональные плотно упакованные кристаллы интерметаллида серебро-олово, взвешенные в эвтектической оловянно-свинцовой сетке, в которой рассеяны участки, богатые свинцом.

Рисунок 1.6 - Сплав оловянно-свинцовой

эвтектики с 15 % серебра; 200

В микроструктуре (рисунок 1.7) ясно обнаруживаются кубические кристаллы оловянно-сурьмяного интерметаллида в сетке эвтектики, богатой б-фазой.

Темная богатая цинком фаза (рисунок 1.8) с гораздо более высокой точкой плавления, чем у других компонентов структуры, затвердевает в квазикристаллической форме. Она содержит главным образом олово, и поэтому остающаяся оловянно-свинцовая эвтектика богата фазой, которая затвердевает в виде дендритов, обычно вблизи обогащенной цинком фазы.

Рисунок 1.7 - Сплав оловянно-свинцовой эвтектики

с 15 % сурьмы; 200

Рисунок 1.8 - Сплав оловянно-свинцовой

эвтектики с 15 % цинка; 200

Металлические примеси оказывают большое влияние на характеристики припоев. Можно было ожидать, что даже сравнительно небольшие количества металлов, вводимых в оловянно-свинцовый припой, меняют поверхностную энергию возникающего сплава и тем самым влияют на характеристики смачивания.

На рисунке 1.9 показаны результаты испытания. Припои, содержащие примеси, были получены вводом определенных количеств примесей в форме мелкого порошка в эвтектический сплав 63 % олова с 37 % свинца. Смесь подогревали до температуры на 55 °С выше точки плавления и перемешивали магнитным способом в течение 20 мин. Затем сплавы заливали при быстром охлаждении, чтобы избежать сегрегации. Примеси вводились в количествах, совершенно не связанных с какими-либо пределами растворимости. Применявшийся флюс состоял из стеариновой кислоты и небольших количеств нашатыря, благодаря чему исключалась возможность попадания в припой ионов металла из флюса. После удаления окислов и флюса сплав шприцевали через специальную фильеру. Полученную таким образом проволоку металлургически проверяли на гомогенность и подвергали анализу для определения точного состава.

1 - алюминий; 2 - висмут; 3 - никель; 4 - медь; 5 - чистая оловянно-свинцовая эвтектика; 6 - кадмий; 7 - цинк

Рисунок 1.9 - Влияние загрязнений на растекаемость эвтектического припоя

Испытания имитировали ручную пайку паяльником. При испытании содержание алюминия не превышало 0,42 %:

С помощью анализатора была проведена оценка растекаемости припоев. Был выбран темп изменения температуры по времени, гарантирующий достижение системой равновесия, причем выбранная длительность испытания была недостаточна для интенсивной взаимной диффузии припоя и основного металла. Ниже дана характеристика шести исследованных примесей.

Висмут, вводимый в оловянно-свинцовый припой, образует твердый раствор с обоими компонентами сплава. С увеличением количества висмута растекание улучшается, причем эта присадка дает наибольшую скорость растекания из всех исследованных сплавов. Предельное количество висмута в твердом растворе со свинцом при 100° С составляет 18,9 %. Растворимость висмута в олове при 25 °С равна 0,5 %.

Добавка никеля также улучшает скорость растекания припоя. Никель не дает твердого раствора с оловом; правда, при высоких температурах (несколько выше величины температуры пайки) возникают интерметаллические соединения. В твердом свинце никель растворяется в незначительных количествах (0,08 %). Интерметаллических соединений никель со свинцом не образует.

Добавление меди несколько повышает скорость растекания припоя. Растворимость меди в олове и свинце пренебрежимо мала. При комнатной температуре существуют два интерметаллических соединения меди с оловом.

Влияние присадки алюминия можно исследовать только в очень узком интервале, так как при температуре испытания алюминий не растворяется в припое. Твердых растворов с оловом или свинцом алюминий не дает, что подтверждено в ряде испытаний.

Кадмий. Этот металл дает твердый раствор с оловом (1,1 % при 100 °С). В твердом растворе со свинцом при 100° С содержится максимально 0,7 %, кадмия. Добавление кадмия понижает скорость растекания припоя.

Введение цинка понижает скорость растекания припоя сильнее, чем остальные присадки. В твердом растворе с оловом при 198 °С содержится не более 2 % цинка. В свинце цинк в твердом состоянии не растворяется.

В заключение можно сказать, что добавление в эвтектический оловянно-свинцовый припой висмута, никеля и меди улучшает смачивающую способность припоя. В случае примеси кадмия и цинка смачиваемость припоя, наоборот, ухудшается.

1.3 Оценка свойств МОС в составе соединения

Для контроля МОС в составе электрического монтажного соединения находит применение различные методы [11-18], например метод неразрушающего контроля, основанный на измерении степени нелинейности вольтамперной характеристики (ВАХ) электрического соединения. Идеальный пассивный элемент должен иметь линейную ВАХ. Наличие неоднородностей и дефектов у реальных элементов приводит к нарушению линейности ВАХ. Наличие нелинейности объясняется существованием потенциального барьера, к образованию которого может привести нарушение энергетических уровней атомов вследствие существования, например, различных поверхностных энергетических уровней.

Основным методом измерения нелинейности ВАХ является метод третьей гармоники [15].

Метод основан на измерении максимального значения напряжения третьей гармоники, возникающего в соединении при прохождении через него синусоидального тока низкой частоты (обычно 10 кГц).

Величина уровня нелинейности, измеренная при фиксированном измерительном напряжении на определенной частоте, определяется по формуле

, (1.1)

где - уровень третьей гармоники;

, - амплитуды первой и третьей гармоник, соответственно.

Отбраковка потенциально ненадежных соединений может быть осуществлена по предельно допустимым уровням нелинейности. Предельно допустимые значения уровня нелинейности устанавливаются экспериментально после обработки статистических данных. Как и все косвенные методы, метод, основанный на измерении степени нелинейности ВАХ, имеет специфические недостатки и дает результат с большой погрешностью.

Визуальный метод является основным для контроля монтажных соединений ЭА. Вспомогательными методами являются оценка прочности ПС на отрыв или срез (разрушающий метод) .

Основным критерием, по которому может быть оценено качество ПС, является величина переходного электрического сопротивления . Однако при производстве ЭА оценка ПС по этому критерию вызывает значительные трудности либо оказывается невозможной. Это объясняется малой величиной переходного сопротивления мкОм и зависимостью величины от параметров электрической схемы.

Это привело к использованию на практике косвенных признаков, которые характеризуют основной критерий качества ПС - , к которым, в первую очередь, относят:

- характер поведения расплавленного припоя и его взаимодействие с обслуживаемыми или паяемыми поверхностями;

- состояние (внешний вид, зернистость, цвет и т. д.) поверхности припоя после лужения и пайки;

- характер, размеры и форма дефектов;

- усилия, выдерживаемые ПС при испытаниях на разрушение.

Как уже отмечалось, механическая прочность какого-либо сплава является функцией главным образом технологии изготовления образца и условий его старения. В частности, в оловянно-свинцовой системе также отмечалось изменение ее прочности с течением времени. Поэтому, для того чтобы при проведении повторных испытаний получить однотипные результаты, необходимо в каждом случае отмечать хотя бы приближенно время, прошедшее после пайки данного соединения. Другим фактором, который нельзя упускать из виду, является уровень температуры во время испытания.

Так как большинство легкоплавких сплавов обладает сравнительно низкой температурой рекристаллизации, весьма близкой к комнатной, уже небольшие изменения температуры испытания могут привести к существенным отклонениям в свойствах паяных соединений. Эти сплавы гораздо более чувствительны к изменениям температуры, чем обычные основные металлы, с которыми приходится иметь дело при пайке. Далее, мы уже видели, что прочность соединения зависит от величины зазора между деталями, так что и его нужно тщательно регистрировать. Кроме того, играет роль и длительность процесса пайки, а также дальнейший тепловой режим соединения, обусловливающий количество образующихся интерметаллических соединений, а они, как отмечено ранее, сильно влияют на механические свойства соединения. С учетом всех этих факторов рассмотрим сейчас испытания, предназначенные для определения ряда свойств соединения, и характер даваемой ими информации.

Страницы: 1, 2, 3, 4, 5