скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Оценка качества монтажных соединений электронной аппаратуры скачать рефераты

Оценка качества монтажных соединений электронной аппаратуры

Дипломная работа

Оценка качества монтажных соединений электронной аппаратуры

РЕФЕРАТ

Пояснительная записка к бакалаврской работе содержит 59 с., 18 рис., 1 табл., 11 источников.

Цель работы - оценивание качества монтажных соединений электронной аппаратуры.

Проведено анализ процессов формирования конструктивно-технологических характеристик монтажных соединений ЭА, методов и средств технологического мониторинга свойств МОС. Рассмотрено моделирование процессов формирования поверхности разрыва при испытаниях материалов, образующих монтажное соединение, на прочность. Сформулированы методы выявления и оценивания информационных признаков.

ЭЛЕКТРОННАЯ АППАРАТУРА, МЕТОДЫ МОНИТОРИНГА, ПОВЕРХНОСТЬ РАЗРЫВА.

СОДЕРЖАНИЕ

Перечень условных обозначений, символов, единиц, сокращений и терминов

Введение

1. Анализ процессов формирования конструктивно технологических характеристик монтажных соединений ЭА, методов и средств технологического мониторинга свойств МОС

1.1 Анализ современных методов технологического мониторинга свойств МОС

1.2 Анализ процессов формирования и изменения свойств МОС при образовании монтажного соединения

1.3 Оценка свойств МОС в составе соединения

2. Моделирование процессов формирования поверхности разрыва при испытаниях материалов, образующих монтажное соединение, на прочность

2.1 Моделирование процессов разрушения монтажного
соединения ЭА

2.2 Моделирование процессов формирования структуры МОС в составе соединения

2.3 Модель формирования поверхности разрыва при испытаниях МОС на прочность

3. Методы выявления и оценивания информационных признаков

3.1 Теоретический анализ и оценка признаков распознавания
поверхности разрыва

Выводы

Перечень ссылок

Приложение А

ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ, СИМВОЛОВ, ЕДИНИЦ, СОКРАЩЕНИЙ И ТЕРМИНОВ

ВАХ - вольтамперная характеристика;

МОС - монтажное соединение;

ПВ - прореагировавшее вещество;

ПР - поверхность разрыва;

ПС - постоянное соединение;

ЭА - электронный аппарат.

ВВЕДЕНИЕ

В производстве электронных аппаратов широко используются технологические процессы сборки и монтажа. Влияние технологических факторов на процесс образования монтажного соединения ЭА может привести к отклонению параметров соединений от ожидаемых. Это обуславливает необходимость технологического мониторинга соединений. Так как влияние технологических факторов отражается в первую очередь на свойствах материалов, образующих монтажные соединения (МОС), предлагается в основу технологического мониторинга положить оценку свойств МОС. Технологический мониторинг, основанный на оценке свойств МОС, дает возможность получать информацию не только о ходе процесса, но и оценивать характеристики соединения, получаемые после его реализации. Существующие методы принципиально не могут обеспечить возможности полного контроля состава и структуры материала, находящегося в соединении, и дать оценку его физико-химической активности в процессе образования соединения, это приводит к необходимости поиска новых методов, дающих оценку свойств в условиях реальных технологических процессов монтажа ЭА.

Таким образом, разработка методов технологического мониторинга монтажных соединений в производстве электронных аппаратов путем оценки свойств материалов, образующих монтажные соединения, является актуальной задачей.

1. АНАЛИЗ ПРОЦЕССОВ ФОРМИРОВАНИЯ КОНСТРУКТИВНО ТЕХНОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК МОНТАЖНЫХ СОЕДИНЕНИЙ ЭА, МЕТОДОВ И СРЕДСТВ ТЕХНОЛОГИЧЕСКОГО МОНИТОРИНГА СВОЙСТВ МОС

1.1 Анализ современных методов технологического мониторинга свойств МОС

При выполнении неразъемных соединений между конструктивными и электрическими элементами ЭА находит применение три вида материалов: припои, клеи и композиционные материалы - пасты, которые обеспечивают электрические и прочностные характеристики соединений, а так же обладают необходимыми технологическими показателями.

Электрических характеристики в достаточной степени задаются составом МОС, имеется большое количество измерительных приборов и методов [1, 2], позволяющих измерять электропроводность в достаточных для применяемых материалов пределах от 10-3 Ом до 107 Ом.

Основными технологическими показателями МОС, имеющего определенный состав, который определяет режимы технологических операций монтажа, можно считать смачиваемость и вязкость. Для контроля этих показателей используются методы [3 - 4].

В настоящее время контроль смачивания является обязательной операцией технологического процесса монтажной пайки при изготовлении ЭА. В качестве характеристики степени смачивания в системе припой-основной металл-флюс можно воспользоваться так называемым углом смачивания. Двумя предельными условиями смачивания являются:

а) полное не смачивание, когда угол смачивания и = 180°;

б) полное смачивание, когда и = 0°.

Между этими двумя крайними состояниями существует непрерывный ряд состояний частичного смачивания. Состояние частичного смачивания нуждается в дополнительных разъяснениях, в особенности, если мы вспомним, что система во время пайки редко достигает истинного равновесия. Обычно время пайки слишком мало, и система затвердевает до того, как будет достигнуто равновесие. В этом отношении полезно рассмотрение угла смачивания. Он характеризует как направление, в котором развивается смачивание, так и достигнутую степень смачивания. Разобьем диапазон 0 - 180° на три участка:

а)и < М. Это условие указывает на хорошее смачивание. За предельную величину М произвольно берется 75° и даже меньше, если от соединения требуется исключительно высокое качество;

б)90° > и >М. Такое соотношение означает условие предельного смачивания; оно приемлемо только в случае, если имеют место какие-либо специфичные условия;

в)и > 90°. Данное условие соответствует отсутствию смачивания, или не смачиванию. Припой затвердевает до наступления смачивания или при не смачивании паяемой поверхности. В случае не смачивания сила, действующая на жидкий припой, заставляет его стягиваться, и скорость этого стягивания является прямой функцией угла смачивания.

В целях контроля качества паяных соединений величину М необходимо строго определять, так как она является критерием хорошего смачивания и бездефектного паяного соединения.

К сказанному выше относительно угла смачивания следует добавить, что угол, образованный между основным металлом и припоем по периферии последнего, на практике является функцией взятого количества припоя и основного металла. Процесс пайки протекает в ограниченный промежуток времени, и это не дает системе припой-флюс-основной металл возможности достичь равновесия. Поэтому замеренный угол смачивания лишь свидетельствует о достигнутом состоянии смачивания и не дает абсолютных характеристик рассматриваемой системы. Одна и та же комбинация основной поверхности, припоя и флюса при идеальных условиях и длительном времени пайки даст, как правило, гораздо меньший угол смачивания, чем при обычных условиях выполнения процесса.

Для того чтобы продемонстрировать возможности использования угла смачивания для оценки качества паяного соединения, ниже приводится несколько взятых из практики примеров. На рисунке 1.1, а показано соединение, выполненное на печатной схеме при хорошем смачивании. На рискунке 1.1, б представлена не смоченная поверхность.

а)б)

а - хорошее смачивание; б - плохое смачивание

Рисунок 1.1 - Оценка качества паяного соединения с помощью угла смачивания

Под не смачиванием мы понимаем процесс, когда сначала припой смачивает поверхность, но затем вследствие недостаточного смачивания стягивается, оставляя за собой на поверхности основного металла тонкий слой затвердевшего сплава. Основная масса припоя свертывается в шарики. Такая картина обычно является результатом неудовлетворительной подготовки поверхности и в качественном соединении недопустима.

Прочностные показатели МОС являются определяющими при оценке возможности монтажного соединения и в целом ЭА выдерживать механические и термоциклические нагрузки. Здесь могут быть использованы общепринятые методы оценки прочностных показателей. Прочность материалов в значительной степени определяется его составом и структурой. На определенном этапе формирования соединений происходит изменение агрегатного состояния МОС путем перевода его в жидкую фазу с помощью повышения температуры, добавки растворителей и других факторов, увеличивающих реакционную способность контактирующих материалов. Жидкофазные материалы характеризуются тем, что в них происходят определенные, изменяющие состав и структуру, физико-химические превращения в гетерогенной системе, которые составляют основу формирования прочности монтажного соединения и затрагивают его электропроводность [1, 5 - 7]. В этой связи можно поставить под сомнение достаточность оценки свойств МОС по общепринятым методикам и поставить вопрос о контроле свойств в составе монтажных соединений.

1.2 Анализ процессов формирования и изменения свойств МОС при образовании монтажного соединения

Для образования монтажных соединений в ЭА в зависимости от выполняемых функций (механическое крепление, электрический контакт и т.д.) используются разнообразные материалы, позволяющие создавать клеи, припои и пасты.

Клеевые соединения реализуют сложный механизм, приводящий к межмолекулярным связям между контактирующими поверхностями, следовательно, контролировать прочность клея вне соединения представляется нецелесообразным.

Учитывая полное изменение агрегатного состояния паст в процессе монтажа, контроль их прочности в составе соединения остается единственным способом получения необходимой информации.

Для электрического монтажа, наибольше применение находят припои на основе различных металлов и сплавов. В [1, 2, 8 - 10] приводятся данные по формированию структуры и изменению состава припоя в процессе образования соединения.

Проанализировав дефекты паяных соединений и причины их появления, можно отметить, что среди них одной из основных является состав припоя, который оказывает определяющее действие на его физические свойства.

При рассмотрении физических свойств оловянно-свинцовых припоев можно иметь в виду, что дисперсионное твердение приводит к образованию нежелательных интерметаллических соединений, которые сообщают металлу хрупкость и уменьшают его прочность. Наличие загрязнений на соединяемых поверхностях может существенно повлиять на качество соединений. Кроме остатков органических и минеральных зазрязнений большое влияние на качество могут оказать материалы соединяемых поверхностей приспособлений, присадок.

В оловянно-свинцовом припое при температурах пайки может раствориться менее 0,5 % алюминия. Исследований по растворимости алюминия в оловянно-свинцовых припоях при более высоких температурах не проводилось. При комнатной температуре алюминий не дает твердых растворов ни с оловом, ни со свинцом. В жидком олове незначительное количество алюминия растворяется лишь при повышенных температурах, главным образом выше нормальных температур пайки. В жидком припое алюминий обычно вызывает загустевание расплава и дает на погружаемых в припой деталях зернистость. В литературе указывается, что алюминий уже в количестве 0,001% приводит к «слабому сцеплению, зернистости и тенденции к образованию горячих трещин». Это является одним из ограничением при решении вопросов применения алюминия в соединениях ЭА. Алюминий не смачивается обычными флюсами, приемлемыми для производства электронных приборов, то имеется тенденция изготовлять из него приспособления для пайки. Непрерывная эрозия алюминиевых деталей, происходящая под действием припоя, в конце концов приведет к переходу алюминия в припой, что потребует замены припоя. Если же неизбежно, чтобы некоторые алюминиевые детали контактировали с жидким припоем, то, даже при малой длительности контакта, эти поверхности следует предварительно анодировать. Установлено, что анодированные поверхности противостоят действию расплавленного припоя в течение более длительного времени, чем такие же алюминиевые детали, покрытые их обычными окислами.

Висмут хорошо растворяется в твердом свинце (до 18 % при комнатной температуре) и малорастворим в твердом олове (всего около 1 % при комнатной температуре) в припое является часто легирующей присадкой. Висмут сам по себе улучшает смачиваемость припоя. Его широкое применение ограничивается лишь тем обстоятельством, что он при затвердевании испытывает необычные преобразования решетки. Кроме того, введение висмута в припой повышает сопротивление сплава. Образование твердых растворов повышает сопротивление и охрупчивание чистой фазы.

Железо в твердом свинце не растворяется, но в олове при повышенных температурах оно в некоторой степени растворимо и образует два интерметаллическнх соединения (FeSn и FeSn2). Присутствие железа даже в небольших количествах (около 0,1%) приводит к зернистости припоя и чрезвычайно вредно. Железо как таковое при температурах пайки растворяется в припое с трудом. Ванны для пайки чаще всего изготовляют из чугуна, и никаких трудностей в связи с этим не возникает. Вместе с тем при температурах выше 425°С железо легко переходит в расплав оловянно-свинцового припоя. Поэтому очень существенно, чтобы в конструкции, например, ванны не было чрезмерно горячих участков, и чтобы нагревательные элементы не контактировали с расплавленным припоем.

Работая с обычным флюсом, смачивания железа можно избежать, нагревая конструкцию, например приспособление, открытым пламенем до появления синего цвета побежалости или до образования толстого слоя окалины. Сообщений о том, что нержавеющая сталь имеет какие-либо преимущества перед обычным чугуном, не публиковалось, хотя она лучше сопротивляется корродирующему действию флюсов, чем обычные чугун и сталь.

При комнатной температуре растворимость золота в оловянно-свинцовом припое ничтожно мала. Однако золото дает несколько интерметаллических соединений со свинцом (Аu2Рb и АuРb2) и оловом (Аu6Sn, АuSn, АuSn2 и АuSn4). При пайке золота таким припоем шов имеет чрезвычайно тусклую и пористую поверхность; избежать этого можно лишь, выполняя пайку с очень большой скоростью, чтобы интерметаллиды не успели подняться на поверхность. Как сообщается в литературе, максимальное количество золота в ванне припоя не должно превышать 0,02-0,2%, потому что иначе расплав становится чрезмерно загустевшим и тусклым.

В течение многих лет золото считалось прекрасно паяемым материалом, но в настоящее время широкое использование данного металла прекращается.

Растворимость кадмия в твердом олове и твердом свинце пренебрежимо мала. При повышенной температуре возникает интерметаллическая фаза. Однако примерно при 130°С имеет место преобразование, в результате которого эта фаза распадается. Кадмий встречается во многих специальных припоях, предназначенных для работы при низких температурах. Но в случае, если припой подводится из ванны расплава, то кадмий повышает густоту припоя, и при медленном охлаждении ванны на ее дне можно обнаружить шлам, содержащий большую часть кадмия. Очевидно, припой сегрегирует вследствие разницы в температурах плавления тройного сплава и чистого оловянно-свинцового припоя; возможно также, что присутствие кадмия способствует развитию в ванне загрязняющих пленок и толстых окисных слоев.

Магний оказывает на припои такое же действие, как и алюминий. Растворимость магния в олове при комнатной температуре ничтожна, хотя образуется интерметаллическое соединение состава MgSn2. В свинце магний нерастворим: образующееся в данной системе интерметаллическое соединение имеет состав Mg2Pb. Так как в электронике магниевые детали встречаются редко, то этот металл в припой почти никогда не вводится.

Страницы: 1, 2, 3, 4, 5