скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Витамины скачать рефераты

ПРОМЫШЛЕННОЕ ПРОИЗВОДСТВО ВИТАМИНОВ И ВИТАМИНИЗАЦИЯ ПИЩИ

В настоящее время витамин А редко получают из рыбьего жира. Современный метод промышленного синтеза витамина А, идентичного природному, - сложный и многоступенчатый процесс.

В маргарин и молоко часто добавляют витамин А. Бета-каротин добавляют в маргарин и многие другие продукты (например, фруктовые напитки, заправки для салатов, смеси для выпечки, мороженое) благодаря его активности витамина А и в качестве естественного пищевого красителя.

Химический синтез витамина В1 представляет собой сложный процесс, включающий от 15 до 17 различных стадий. Хотя коммерческое производство тиамина впервые было осуществлено в 1937 году, широкомасштабное производство тиамина было начато только в пятидесятые годы, когда в связи с витаминизацией пищи резко возросла потребность в данном витамине.

Витаминизация белой муки, злаковых, макаронных изделий и риса была начата в США во время Второй Мировой войны (1939-1945), вскоре этому примеру последовали и другие страны. Витаминизация основных продуктов питания практически искоренило в развивающихся странах заболевания, связанные с недостаточностью витамина В.

Витамин В12 производится биотехнологическим методом преимущественно в форме цианокобаламина.

Витамин В12 широко применяется при витаминизации круп и некоторых напитков. Диетические продукты питания, такие как детские продукты и продукты для похудения обогащаются витаминами, и в том числе витамином В12. Обогащение продуктов витамином В12 особенно важно для лиц, употребляющих продукты с низким содержанием данного витамина, таких как строгие вегетарианцы.

Рибофлавин может быть получен путем химического синтеза или биотехнологическим методом. Химический синтез представляет собой усовершенствованный процесс, разработанный Куном и Каррером в 1934 году, использующий в качестве исходного материала о-ксилен, D-рибозу и аллоксан. Различные штаммы бактерий и дрожжей применяются для синтеза рибофлавина в коммерческих целях, с использованием дешевых природных материалов и промышленных отходов в качестве питательной среды для микроорганизмов.

Рибофлавин входит в число витаминов, часто добавляемых в белую муку и хлебобулочные изделия для того, чтобы компенсировать их потери при переработке. Он также используется для витаминизации молока, круп и диетических продуктов.

Витамины группы В широко используются для обогащения злаковых. Диетические продукты питания, такие как детские продукты и продукты для похудения обогащаются витаминами, в том числе пиридоксином.

Бета-каротин часто добавляют в маргарин и фруктовые напитки. В 1941 году Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (США) установило стандартные нормы добавления витамина А в маргарин; в настоящее время витамин А частично заменен на бета-каротин, который придает привлекательный желтоватый цвет продуктам. В силу своей безопасности бета-каротин признан более подходящим, чем витамин А для использования в целях витаминизации продуктов.

Ислер с коллегами разработал метод синтезирования бета-каротина, который был поставлен на промышленную основу начиная с 1954 года для получения бета-каротина в кристаллической форме.

Синтез биотина в коммерческом масштабе основан на методе, разработанном Голдбергом и Штернбахом в 1949 году, и использующем в качестве исходного материала фумаровую кислоту. В результате этого метода получают чистый D-биотин, идентичный природному соединению.

Биотин добавляют к молочным смесям и другим пищевым продуктам для детей и к диетическим продуктам.
Рост хлебопекарных дрожжей (Saccharomyces cerevisiae) находится в зависимости от биотина. Поэтому биотин, в качестве стимулятора роста, добавляется в питательную среду, используемую для ферментирования дрожжей. От биотина также зависят многие из микроорганизмов, применяемых в современной промышленной биотехнологии. Поэтому, в этом качестве, он добавляется в среду роста

В косметике биотин употребляется как компонент составов для ухода за волосами.

Синтез аскорбиновой кислоты был осуществлен Райхштейном в 1933 году, а спустя пять лет было осуществлено его промышленное производство. В настоящее время синтетический витамин С, идентичный натуральному, производится на промышленной основе из глюкозы путем химического и биотехнологического синтеза.

В пищевой промышленности аскорбиновая кислота используется в качестве натурального антиоксиданта. Это означает, что добавление аскорбиновой кислоты в пищевые продукты в процессе переработки или перед их упаковкой позволяет сохранить цвет, запах и питательную ценность продуктов. Такое применение аскорбиновой кислоты не имеет ничего общего с ее витаминной активностью. В процессе переработки мяса применение аскорбиновой кислоты позволяет снизить количество добавляемых нитритов и нитритный остаток в готовом продукте. (В желудке нитриты трансформируются в потенциально канцерогенные нитрозомины).

Добавление аскорбиновой кислоты в свежую муку улучшает ее пекарские качества, тем самым экономя 4-8 недель, необходимые для созревания муки после помола.

Холекальциферол производится промышленным способом путем воздействия ультрафиолетового света на 7-дегидрохолестерин, получаемый из холестерина различными методами. Эргокальциферол производят подобным образом из эргостерина, экстрагируемого из дрожжей. Исходным материалом для производства кальцитриола является производное холестерина прегненолон.

Во многих странах молоко и молочные продукты, маргарин и растительные масла, обогащенные витамином D, служат основным пищевым источником витамина D.

Витамин Е, выделяемый из природных источников, получают путем молекулярной возгонки и в большинстве случае путем последующего метилирования и этерификации пищевых овощных масляных продуктов. Синтетический витамин Е производят из природного растительного материала путем конденсации триметилгидрохинона с изофитолом.

Витамин Е в форме dl-a-токоферола находит широкое применение в качестве противоокислительного средства (антиоксиданта) для стабилизации пищевых масел и жиров и жиросодержащих продуктов питания.

Исследования показали, что витамин Е в комбинации с витамином С снижает образование нитрозоминов (которые, как показали опыты на животных, являются канцерогенами) в беконе более эффективно, чем один витамин С.

Витамин Е используется для местного применения в качестве противовоспалительного средства для увлажнения кожи и предохранения ее от повреждающего воздействия ультрафиолетовых лучей.

Фолиевая кислота производится в больших масштабах с использованием химического синтеза. Известны различные процессы ее производства. Большая часть синтетической фолиевой кислоты используется в качестве добавки к корму животных.

Фолиевая кислота добавляется к различным пищевым продуктам, наиболее важными из которых являются зерновые для завтрака, питье, безалкогольные напитки и детское питание.

Процесс включает в себя использование моноэфира в качестве менадиола и кислотный катализатор. Очистка желаемого продукта с целью удаления не прореагировавших реагентов и побочных продуктов происходит либо на стадии хинола, либо после окисления.

За исключением специальных продуктов для новорожденных витамин К не добавляют в пищу. Витамин К синтезируется промышленным образом и используется в прописях для новорожденных (100 мг/литр) и лекарственных препаратах для человека.

В большинстве случаев ниацин вырабатывается из 3-метилпиридина, хотя известны и другие способы. Это вещество является производным двух углеродных соединений -ацетальдегида и формальдегида или из смеси акролеина с аммиаком. Никотинамид синтезируется посредством окисления аммиаком и частичным гидролизом 3-метилпиридина. При дальнейшем продолжении гидролиза образуется никотиновая кислота.

Пантотеновая кислота химически синтезируется в результате реакции конденсации D-пантолактона с бета-аланином. Добавка солей кальция приводит к образованию бесцветных кристаллов пантотената кальция. Пантотенол производится в виде прозрачной, почти бесцветной, вязкой гигроскопической жидкости.

Пантотенат добавляется к различным пищевым продуктам, наиболее важным из которых являются зерновые для завтрака, напитки, диетические продукты и детское питание.

Пантенол часто используется в качестве косметического продукта. В составе средств по уходу за кожей пантенол способствует поддержанию кожи увлажненной и способствует ее питанию, а также - стимулирует рост клеток и восстановление ткани, кроме того он устраняет воспалительные процессы и покраснение кожи. Как увлажнитель и кондиционер в продуктах ухода за волосами, он защищает их и способствует восстановлению повреждений, вызываемых химическими или механическими воздействиями (расчесывание волос, мытье шампунями, завивка, окрашивание и так далее) и способствует блеску волос.

УСТОЙЧИВОСТЬ И СТАБИЛЬНОСТЬ ПРИ КУЛИНАРНОЙ ОБРАБОТКЕ

Витамин А чувствителен к окислению на воздухе. Тепло и световое воздействие ускоряют потерю активности. Окисление жиров и масел (например, сливочного масла, маргарина, кулинарных жиров) может разрушить жирорастворимые витамины, включая витамин А. Присутствие антиоксидантов типа витамина Е способствует защите витамина А.

Бета-каротин - один из наиболее устойчивых витаминов в овощах. Его потери в процессе приготовления пищи составляют 25 % , но только если процесс кипения был довольно-таки продолжительным.

Каротиноиды могут терять часть своей активности в продуктах при хранении из-за действия ферментов и под воздействием света и кислорода. Обезвоживание овощей и фруктов может значительно снизить биологическую активность каротиноидов. С другой стороны, каротиноиды сохраняют свою стабильность в замороженных продуктах.

Витамин В1 нестабилен при нагревании и в щелочных средах, тиамин чувствителен к воздействию кислорода и радиации. Водорастворимость тиамина также приводит к уменьшению его содержания в пище. Около 25% тиамина, содержащегося в пище, теряется в процессе обычного приготовления. Значительная часть тиамина теряется вместе с жидкостью, образующейся при разморозке мяса или с водой, используемой для приготовления мяса и овощей. Для сохранения тиамина продукты следует готовить в закрытой посуде в течение как можно более короткого времени, их также не следует вымачивать или слишком долго подвергать нагреванию. Выделяемые соки и вода, используемая при приготовлении, должны быть повторно использованы в качестве подливки или соусов.

Витамин В12 медленно теряет свою активность под воздействием света, кислорода и в кислых или щелочных средах. Он, однако термостабилен, и его потери в процессе обычного приготовления пищи (приблизительно 70% витамина) связаны в большей степени с удалением его вместе с мясными соками и водой, нежели с его деградацией.

Витамин В2 термостабилен, так что он практически не разрушается в процессе обычного приготовления пищи, если только не подвергать продукты длительному воздействию света, что может привести к потере до 50% витамина. Некоторая часть рибофлавина может также теряться вместе с водой, используемой для приготовления. Вследствие высокой чувствительности рибофлавина к воздействию света, он быстро разрушается в молоке, хранимом в стеклянных бутылках при ярком солнечном свете (85 % в течение 2 часов). Стерилизация продуктов облучением или обработкой оксидом этилена может также привести к разрушению рибофлавина.

Витамин В6 относительно стабилен при нагревании, но чувствителен к окислению кислородом и разлагается под воздействием ультрафиолетового света, а также в щелочных средах. Замораживание овощей приводит к потере до 25% пиридоксина, а при перемоле зерновых теряется до 90 % имеющего витамина. В процессе приготовления пищи потери данного витамина могут достигать 40%.

Витамин С чувствителен к теплу, свету и кислороду. Он может частично или полностью разрушаться в продуктах в результате длительного хранения или приготовления пищи. Например, при хранении картофеля при комнатной температуре потери содержащегося в нем витамина С составляют до 15 % каждый месяц, а при варке очищенного картофеля разрушаются дополнительные 30 - 50 % витамина С.

Витамин D относительно устойчив в продуктах; хранение, обработка и процесс приготовления пищи оказывают незначительное влияние на его активность, хотя в витаминизированном молоке порядка 40 % добавленного витамина D может быть утрачено в результате светового воздействия.

Свет, кислород и тепло являются разрушающими факторами при длительном хранении и в процессе приготовления пищи и снижают содержание витамина Е в продуктах питания. В некоторых продуктах содержание витамина Е может уменьшиться вполовину всего лишь после двух недель хранения их при комнатной температуре. Количество витамина Е в растительных маслах значительно снижается в результате жарки.

Соединения витамина К относительно устойчивы к теплу и факторам восстановления, однако чувствительны к кислоте, щелочи, свету и факторам окисления.

Как никотинамид, так и никотиновая кислота, стабильны по отношению к нагреву, свету, воздуху и щелочам. Некоторое их количество может теряться в процессе кулинарной обработки и при хранении пищевых продуктов.

Биотин относительно стабилен. В большинстве пищевых продуктов он связан в белках, из которых он выделяется в кишечнике в результате гидролиза протеина и действия особого фермента, биотинидазы. В процессе приготовления блюд потери биотина незначительны, в большинстве своём они происходят в результате выщелачивания воды в процессе варки. Обработка пищевых продуктов, как например, консервирование вызывает умеренное снижение содержания биотина.

Большинство форм фолатов нестабильно. Свежие лиственные овощи, хранимые при комнатной температуре, могут терять до 70% фолатов за три дня. Значительные потери могут также происходить в результате экстракции в воду в процессе приготовления пищи (до 95%) и тепловой обработки.

Пантотеновая кислота стабильна при нейтральных рН, но легко разлагается при нагревании в щелочных или кислых растворах. Во время приготовления пищи может быть потеряно до 50% пантотеновой кислоты (вследствие выщелачивания) и до 80% в результате обработки и рафинирования пищи (консервирование, замораживание, измельчение и так далее). Пастеризация молока вызывает лишь незначительные потери.

ЗАКЛЮЧЕНИЕ

Витамины, группа незаменимых для организма человека и животных органических соединений, обладающих очень высокой биологической активностью, присутствующих в ничтожных количествах в продуктах питания, но имеющих огромное значение для нормального обмена веществ и жизнедеятельности. Основное их количество поступает в организм с пищей, и только некоторые синтезируются в кишечнике обитающими в нём полезными микроорганизмами, однако и в этом случае их бывает не всегда достаточно. Современная научная информация свидетельствует об исключительно многообразном участии витаминов в процессе обеспечения жизнедеятельности человеческого организма. Одни из них являются обязательными компонентами ферментных систем и гормонов, регулирующих многочисленные этапы обмена веществ в организме, другие являются исходным материалом для синтеза тканевых гормонов. Витамины в большой степени обеспечивают нормальное функционирование нервной системы, мышц и других органов и многих физиологических систем. От уровня витаминной обеспеченности питания зависит уровень умственной и физической работоспособности, выносливости и устойчивости организма к влиянию неблагоприятных факторов внешней среды, включая инфекции и действия токсинов.

Маленьким детям витамины абсолютно необходимы: недостаточное их поступление может замедлить рост ребенка и его умственное развитие. У малышей, не получающих витамины в должных количествах, нарушается обмен веществ, снижается иммунитет. Именно поэтому производители детского питания обязательно обогащают свои продукты (молочные смеси, овощные и фруктовые соки, пюре, каши) всеми необходимыми витаминами.

Литература.

1. http://www.roche.ru

2. http://www.sol.ru

3. Павлоцкая Л.Ф. Физиология питания. М., “Высшая школа”., 1991

4. Петровский К.С. Гигиена питания М., 1984

5. Припутина Л.С. Пищевые продукты в питании человека. Киев, 1991

6. Скурихин И.М. Как правильно питаться М., 1985

7. Смолянский Б.Л. Справочник по лечебному питанию М., 1996

Array

Страницы: 1, 2, 3, 4