скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Металлы скачать рефераты

AlCl3 + 3NH3 · H2O ? Al(OH)3 ? + 3NH4Cl

Оксид и гидроксид этого металла являются амфотерными, т.е. проявляют как основные, так и кислотные свойства.

Основные свойства:

Al2O3 + 6HCl ? 2AlCl3 + 3H2O

2Al(OH)3 + 3H2SO4 ? Al2(SO4)3 + 6H2O

Кислотные свойства:

Al2O3 + 6KOH +3H2O ? 2K3[Al(OH)6]

2Al(OH)3 + 6KOH ? K3[Al(OH)6]

Al2O3 + 2NaOH ? 2NaAlO2 + H2O

Алюминий получают электролитическим методом. Он не может быть выделен из водных растворов солей, т.к. является очень активным металлом. Поэтому основным промышленным методом получения металлического алюминия является электролиз расплава, содержащего оксид алюминия и криолит.

Металлический алюминий широко используется в промышленности, по объему производства занимает второе место после железа. Основная масса алюминия идет на изготовление сплавов:

Дуралюмин - сплав алюминия, содержащий медь и небольшое количество магния, марганца и других компонентов. Дуралюмины - легкие прочные и коррозионностойкие сплавы. Используют в авиа- и машиностроении.

Магналин - сплав алюминия с магнием. Используют в авиа- и машиностроении, в строительстве. Стоек к коррозии в морской воде, поэтому его применяют в судостроении. Силумин - сплав алюминия, содержащий кремний. Хорошо подвергается литью. Этот сплав используют в автомобиле-, авиа- и машиностроении, производстве точных приборов. Алюминий - пластичный металл, поэтому из него изготавливают тонкую фольгу, используемую в производстве радиотехнических изделий и для упаковки товаров. Из алюминия делают провода, краски «под серебро».

Переходные металлы.

Железо.

В периодической системе железо находится в четвертом периоде, в побочной подгруппе VIII группы.

Порядковый номер - 26, электронная формула 1s2 2s2 2p6 3d6 4s2.

Валентные электроны у атома железа находятся на последнем электронном слое (4s2) и предпоследнем (3d6). В химических реакциях железо может отдавать эти электроны и проявлять степени окисления +2, +3 и, иногда, +6.

Железо является вторым по распространенности металлом в природе (после алюминия).Наиболее важные природные соединения: Fe2O3 3H2O - бурый железняк;Fe2O3 - красный железняк;Fe3O4(FeO Fe2O3) - магнитный железняк;FeS2 - железный колчедан (пирит).Соединения железа входят в состав живых организмов.

Железо - серебристо серый металл, обладает большой ковкостью, пластичностью и сильными магнитными свойствами. Плотность железа - 7,87 г/см3, температура плавления 1539С.

В промышленности железо получают восстановлением его из железных руд углеродом (коксом) и оксидом углерода (II) в доменных печах. Химизм доменного процесса следующий:

C + O2 = CO2,

CO2 + C = 2CO.

3Fe2O3 + CO = 2Fe3O4 + CO2,

Fe3O4 + CO = 3FeO + CO2,

FeO + CO = Fe + CO2.

В реакциях железо является восстановителем. Однако при обычной температуре оно не взаимодействует даже с самыми активными окислителями (галогенами, кислородом, серой), но при нагревании становится активным и реагирует с ними:

2Fe + 3Cl2 = 2FeCl3 Хлорид железа (III)

3Fe + 2O2 = Fe3O4(FeO Fe2O3) Оксид железа (II,III)

Fe + S = FeS Сульфид железа (II)

При очень высокой температуре железо реагирует с углеродом, кремнием и фосфором:

3Fe + C = Fe3C Карбид железа (цементит)

3Fe + Si = Fe3Si Силицид железа

3Fe + 2P = Fe3P2 Фосфид железа (II)

Во влажном воздухе железо быстро окисляется (корродирует):

4Fe + 3O2 + 6H2O = 4Fe(OH)3,

Железо находится в середине электрохимического ряда напряжений металлов, поэтому является металлом средней активности. Восстановительная способность у железа меньше, чем у щелочных, щелочноземельных металлов и у алюминия. Только при высокой температуре раскаленное железо реагирует с водой:

3Fe + 4H2O = Fe3O4 + 4H2

Железо реагирует с разбавленными серной и соляной кислотами, вытесняя из кислот водород:

Fe + 2HCl = FeCl2 + H2

Fe + H2SO4 = FeSO4 + H2

При обычной температуре железо не взаимодействует с концентрированной серной кислотой, так как пассивируется ею. При нагревании концентрированная H2SO4 окисляет железо до сульфита железа (III):

2Fe + 6H2SO4 = Fe2(SO4)3 + 3SO2 + 6H2O.

Разбавленная азотная кислота окисляет железо до нитрата железа (III):

Fe + 4HNO3 = Fe(NO3)3 + NO + 2H2O.

Концентрированная азотная кислота пассивирует железо.

Из растворов солей железо вытесняет металлы, которые расположены правее его в электрохимическом ряду напряжений:

Fe + CuSO4 = FeSO4 + Cu, Fe0 + Cu2+ = Fe2+ + Cu0.

Оксид железа (II) FeO - черное кристаллическое вещество, нерастворимое в воде. Оксид железа (II) получают восстановлением оксида железа(II,III) оксидом углерода (II):

Fe3O4 + CO = 3FeO + CO2.

Оксид железа (II) - основной оксид, легко реагирует с кислотами, при этом образуются соли железа(II):

FeO + 2HCl = FeCl2 + H2O, FeO + 2H+ = Fe2+ + H2O.

Гидроксид железа (II) Fe(OH)2 - порошок белого цвета, не растворяется в воде. Получают его из солей железа (II) при взаимодействии их со щелочами:

FeSO4 + 2NaOH = Fe(OH)2 + Na2SO4,

Fe2+ + 2OH- = Fe(OH)2.

Гидроксид железа (II) Fe(OH)2 проявляет свойства основания, легко реагирует с кислотами:

Fe(OH)2 + 2HCl = FeCl2 + 2H2O,

Fe(OH)2 + 2H+ = Fe2+ + 2H2O.

При нагревании гидроксид железа (II) разлагается:

Fe(OH)2 = FeO + H2O.

Соединения со степенью окисления железа +2 проявляют восстановительные свойства, так как Fe2+ легко окисляются до Fe+3:

Fe+2 - 1e = Fe+3

Так, свежеполученный зеленоватый осадок Fe(OH)2 на воздухе очень быстро изменяет окраску - буреет. Изменение окраски объясняется окислением Fe(OH)2 в Fe(OH)3 кислородом воздуха:

4Fe+2(OH)2 + O2 + 2H2O = 4Fe+3(OH)3.

Оксид железа (III) Fe2O3 - порошок бурого цвета, не растворяется в воде. Оксид железа (III) получают:

А) разложением гидроксида железа (III):

2Fe(OH)3 = Fe2O3 + 3H2O

Б) окислением пирита (FeS2):

4Fe+2S2-1 + 11O20 = 2Fe2+3O3 + 8S+4O2-2.

Оксид железа (III) проявляет амфотерные свойства:

А) взаимодействует с твердыми щелочами NaOH и KOH и с карбонатами натрия и калия при высокой температуре:

Fe2O3 + 2NaOH = 2NaFeO2 + H2O,

Fe2O3 + 2OH- = 2FeO2- + H2O,

Fe2O3 + Na2CO3 = 2NaFeO2 + CO2.

Феррит натрия

Гидроксид железа (III) получают из солей железа (III) при взаимодействии их со щелочами:

FeCl3 + 3NaOH = Fe(OH)3 + 3NaCl,

Fe3+ + 3OH- = Fe(OH)3.

Гидроксид железа (III) является более слабым основанием, чем Fe(OH)2, и проявляет амфотерные свойства (с преобладанием основных). При взаимодействии с разбавленными кислотами Fe(OH)3 легко образует соответствующие соли:

Fe(OH)3 + 3HCl FeCl3 + H2O

2Fe(OH)3 + 3H2SO4 Fe2(SO4)3 + 6H2O

Fe(OH)3 + 3H+ Fe3+ + 3H2O

Реакции с концентрированными растворами щелочей протекают лишь при длительном нагревании.

Соединения со степенью окисления железа +3 проявляют окислительные свойства, так как под действием восстановителей Fe+3 превращается в Fe+2:

Fe+3 + 1e = Fe+2.

Так, например, хлорид железа (III) окисляет йодид калия до свободного йода:

2Fe+3Cl3 + 2KI = 2Fe+2Cl2 + 2KCl + I20

Хром.

Хром находится в побочной подгруппе VI группы Периодической системы. Строение электронной оболочки хрома: Cr3d54s1.

Массовая доля хрома в земной коре составляет 0,02%. Важнейшими минералами, входящими в состав хромовых руд, являются хромит, или хромистый железняк, и его разновидности, в которых железо частично заменено на магний, а хром - на алюминий.

Хром - серебристо серый металл. Чистый хром достаточно пластичный, а технический самый твердый из всех металлов.

Хром химически малоактивен. В обычных условиях он реагирует только с фтором (из неметаллов), образуя смесь фторидов. При высоких температурах (выше 600°C) взаимодействует с кислородом, галогенами, азотом, кремнием, бором, серой, фосфором:

4Cr + 3O2  -t°?  2Cr2O3

2Cr + 3Cl2  -t°?  2CrCl3

2Cr + N2  -t°?  2CrN

2Cr + 3S   -t°?  Cr2S3

В азотной и концентрированной серной кислотах он пассивирует, покрываясь защитной оксидной пленкой. В хлороводородной и разбавленной серной кислотах растворяется, при этом, если кислота полностью освобождена от растворенного кислорода, получаются соли хрома(II), а если реакция протекает на воздухе - соли хрома (III):

Cr + 2HCl ? CrCl2 + H2-

2Cr + 6HCl + O2 ? 2CrCl3 + 2H2O + H2-

Оксид хрома (II) и гидроксид хрома (II) имеют основной характер.

Cr(OH)2 + 2HCl ? CrCl2 + 2H2O

Соединения хрома (II) - сильные восстановители; переходят в соединения хрома (III) под действием кислорода воздуха.

2CrCl2 + 2HCl ? 2CrCl3 + H2-

4Cr(OH)2 + O2 + 2H2O ? 4Cr(OH)3

Соединения трёхвалентного хрома

Оксид хрома (III) Cr2O3 - зелёный, нерастворимый в воде порошок. Может быть получен при прокаливании гидроксида хрома (III) или дихроматов калия и аммония:

 

2Cr(OH)3  -t°?  Cr2O3 + 3H2O

4K2Cr2O7  -t°?  2Cr2O3 + 4K2CrO4 + 3O2-

(NH4)2Cr2O7  -t°?  Cr2O3 + N2-+ 4H2O-

 

Амфотерный оксид. При сплавлении Cr2O3 со щелочами, содой и кислыми солями получаются соединения хрома со степенью окисления (+3):

 

Cr2O3 + 2NaOH ? 2NaCrO2 + H2O

Cr2O3 + Na2CO3 ? 2NaCrO2 + CO2-

Cr2O3 + 6KHSO4 ? Cr2(SO4)3 + 3K2SO4 + 3H2O

 

При сплавлении со смесью щёлочи и окислителя получают соединения хрома в степени окисления (+6):

2Cr2O3 + 4KOH + KClO3 ? 2K2Cr2O7(дихромат калия) + KCl + 2H2O

Гидроксид хрома (III) Cr(OH)3 - нерастворимое в воде вещество зелёного цвета.

Cr2(SO4)3 + 6NaOH ?2Cr(OH)3Ї + 3Na2SO4

Обладает амфотерными свойствами - растворяется как в кислотах, так и в щелочах:

2Cr(OH)3 + 3H2SO4 ? Cr2(SO4)3 + 6H2O

Cr(OH)3 + KOH ? K[Cr(OH)4]

Оксид хрома (VI) CrO3 - ярко-красные кристаллы, растворимые в воде.

Получают из хромата (или дихромата) калия и H2SO4(конц.).

 

K2CrO4 + H2SO4 ? CrO3 + K2SO4 + H2O

K2Cr2O7 + H2SO4 ? 2CrO3 + K2SO4 + H2O 

CrO3 - кислотный оксид, со щелочами образует жёлтые хроматы CrO42-:

CrO3 + 2KOH ? K2CrO4 + H2O

В кислой среде хроматы превращаются в оранжевые дихроматы Cr2O72-:

2K2CrO4 + H2SO4 ? K2Cr2O7 + K2SO4 + H2O

В щелочной среде эта реакция протекает в обратном направлении: 

K2Cr2O7 + 2KOH ? 2K2CrO4 + H2O 

Все соединения хрома (VI) - сильные окислители.

4CrO3 + 3S ? 3SO2- + 2Cr2O3

Медь.

Медь находится в побочной подгруппе I группы Периодической системы. Строение электронных оболочек атомов элементов этой подгруппы выражается формулой (n-1)d10ns1. На внешнем энергетическом уровне атома находится один электрон, однако в образовании хим. связей могут принимать участие и электроны с d-подуровня предпоследнего уровня. Поэтому они могут проявлять степени окисления +1, +2, +3, для меди наиболее устойчивы соединения со степенью окисления +2.

Медь - мягкий пластичный металл, имеет розово-красную окраску. Обладает высокой электрической проводимостью.

Медь - химически малоактивный металл. С кислородом реагирует только при нагревании:

2Cu + O2 = 2CuO

Не реагирует с водой, растворами щелочей, хлороводородной и разбавленной серной кислотами. Медь растворяется в кислотах, являющихся сильными окислителями:

3Cu + 8HNO3 (разб.) = 3Cu(NO3)2 + 2NO + 4H2O

Cu + 2H2SO4 (конц.) = CuSO4 + SO2 +2H2O

Во влажной атмосфере, содержащей диоксид углерода, поверхность меди обычно покрывается зеленоватым налетом основного карбоната меди:

2Cu + O2 + CO2 +H2O = Cu(OH)2 · CuCO3

Оксид меди (II) CuO - черное вещество, может быть получен из простых веществ или путем нагревания гидроксида меди (II):

Cu(OH)2 = CuO + H2O

Гидроксид меди (II) представляет собой малорастворимое в воде соединение голубого цвета. Легко растворяется в кислотах и при нагревании в концентрированных растворах щелочей, т.е. проявляет свойства амфотерного гидроксида:

Cu(OH)2 + H2SO4 = CuSO4 + 2H2O

Cu(OH)2 + 2KOH = K2[Cu(OH)4]

Основная масса производимой меди используется в электротехнической промышленности. В больших количествах медь идет на производство сплавов.

Цинк.

Цинк находится в побочной подгруппе II группы. Атомы элементов этой подгруппы имеют следующую электронную оболочку: (n-1)s2p6d10ns2. Проявляют в соединениях степень окисления +2.

Цинк - серебристо-белый металл. Обладает хорошей электро- и теплопроводимостью. На воздухе цинк покрывается защитной пленкой оксидов и гидроксидов, которая ослабляет его металлический блеск.

Цинк - химически активный металл. При нагревании легко взаимодействует с неметаллами (серой, хлором, кислородом):

2Zn + O2 = 2ZnO

Растворяется в разбавленных и концентрированных кислотах HCl, H2SO4, HNO3 и в водных растворах щелочей:

Zn + 2HCl = ZnCl2 + H2

4Zn + 10HNO3 = 4Zn(NO3)2 + NH4NO3 + 3H2O

Zn + 2NaOH + 2H2O = Na2[Zn(OH)4] + H2

Оксид цинка - белое вещество, практически нерастворимое в воде. Оксид и гидроксид цинка являются амфотерными соединениями; они реагируют с кислотами и щелочами:

ZnO +2HCl = ZnCl2 + H2O

ZnO + 2KOH + H2O = K2[Zn(OH)4]

Гидроксид цинка растворяется в водном растворе аммиака, образуя комплексное соединение:

Zn(OH)2 + 6NH3 = [Zn(NH3)6](OH)2

При получение цинка его руды подвергают обжигу:

2ZnS + 3O2 = 2ZnO + 2SO2

ZnCO3 = ZnO + CO2

Далее оксид цинка восстанавливают углем:

ZnO + C = Zn + CO

Для получения более чистого металла оксид цинка растворяют в серной кислоте и выделяют электролизом.

Цинк используют для производства сплавов. Цинком покрывают стальные и чугунные изделия для защиты их от коррозии.

Понятие о сплавах.

Характерной особенностью металлов является их способность образовывать друг с другом или с неметаллами сплавы. Чтобы получить сплав, смесь металлов обычно подвергают плавлению, а затем охлаждают с различной скоростью, которая определяется природой компонентов и изменением характера их взаимодействия в зависимости от температуры. Иногда сплавы получают спеканием тонких порошков металлов, не прибегая к плавлению (порошковая металлургия). Итак сплавы - это продукты химического взаимодействия металлов.

Кристаллическая структура сплавов во многом подобна чистым металлам, которые, взаимодействуя друг с другом при плавлении и последующей кристаллизации, образуют: а) химические соединения, называемые интерметаллидами; б) твердые растворы; в) механическую смесь кристаллов компонентов.

Тот или иной тип взаимодействия определяется соотношением энергии взаимодействия разнородных и однородных частиц системы, то есть соотношением энергий взаимодействия атомов в чистых металлах и сплавах.

Современная техника использует огромное число сплавов, причем в подавляющем большинстве случаев они состоят не из двух, а из трех, четырех и большего числа металлов. Интересно, что свойства сплавов часто резко отличаются от свойств индивидуальных металлов, которыми они образованы. Так, сплав, содержащий 50% висмута, 25% свинца, 12,5% олова и 12,5% кадмия, плавится всего при 60,5 градусах Цельсия, в то время как компоненты сплава имеют соответственно температуры плавления 271, 327, 232 и 321 градус Цельсия. Твердость оловянной бронзы (90% меди и 10% олова) втрое больше, чем у чистой меди, а коэффициент линейного расширения сплавов железа и никеля в 10 раз меньше, чем у чистых компонентов.

Однако некоторые примеси ухудшают качество металлов и сплавов. Известно, например, что чугун (сплав железа и углерода) не обладает той прочностью и твердостью, которые характерны для стали. Помимо углерода, на свойства стали влияют добавки серы и фосфора, увеличивающие ее хрупкость.

Среди свойств сплавов наиболее важными для практического применения являются жаропрочность, коррозионная стойкость, механическая прочность и др. Для авиации большое значение имеют легкие сплавы на основе магния, титана или алюминия, для металлообрабатывающей промышленности - специальные сплавы, содержащие вольфрам, кобальт, никель. В электронной технике применяют сплавы, основным компонентом которых является медь. Сверхмощные магниты удалось получить, используя продукты взаимодействия кобальта, самария и других редкоземельных элементов, а сверхпроводящие при низких температурах сплавы - на основе интерметаллидов, образуемых ниобием с оловом и др.

Страницы: 1, 2