Металлы
Металлы
Металлы - это элементы, проявляющие в своих соединениях только положительные степени окисления, и в простых веществах которые имеют металлические связи. Металлическая кристаллическая решетка - решетка, образованная нейтральными атомами и ионами металлов, связанными между собой свободными электронами. У металлов в узлах кристаллической решетки находятся атомы и положительные ионы. Электроны, отданные атомами, находятся в общем владении атомов и положительных ионов. Такая связь называется металлической. Для металлов наиболее характерны следующие физические свойства: металлический блеск, твердость, пластичность, ковкость и хорошая проводимость тепла и электричества. Теплопроводность и электропроводность уменьшается в ряду металлов: Аg Сu Аu Аl Мg Zn Fе РЬ Hg.
Многие металлы широко распространены в природе. Так, содержание некоторых металлов в земной коре следующее: алюминия -- 8,2%; железа -- 4,1%; кальция -- 4,1%; натрия -- 2,3%; магния -- 2,3%; калия - 2,1%; титана -- 0,56%.
С внешней стороны металлы, как известно, характеризуются прежде всего особым “металлическим” блеском, который обусловливается их способностью сильно отражать лучи света. Однако этот блеск наблюдается обыкновенно только в том случае, когда металл образует сплошную компактную массу. Правда, магний и алюминий сохраняют свой блеск, даже будучи превращенными в порошок, но большинство металлов в мелкораздробленном виде имеет черный или темно-серый цвет. Затем типичные металлы обладают высокой тепло- и электропроводностью, причем по способности проводить тепло и ток располагаются в одном и том же порядке: лучшие проводники - серебро и медь, худшие - свинец и ртуть. С повышением температуры электропроводность падает, при понижении температуры, наоборот, увеличивается.
Очень важным свойством металлов является их сравнительно легкая механическая деформируемость. Металлы пластичны, они хорошо куются, вытягиваются в проволоку, прокатываются в листы и т.п.
Характерные физические свойства металлов находятся в связи с особенностями их внутренней структуры. Согласно современным воззрениям, кристаллы металлов состоят из положительно заряженных ионов и свободных электронов, отщепившихся от соответствующих атомов. Весь кристалл можно себе представить в виде пространственной решетки, узлы которой заняты ионами, а в промежутках между ионами находятся легкоподвижные электроны. Эти электроны постоянно переходят от одних атомов к другим и вращаются вокруг ядра то одного, то другого атома. Так как электроны не связаны с определенными ионами, то уже под влиянием небольшой разности потенциалов они начинают перемещаться в определенном направлении, т.е. возникает электрический ток.
Наличием свободных электронов обусловливается и высокая теплопроводность металлов. Находясь в непрерывном движении, электроны постоянно сталкиваются с ионами и обмениваются с ними энергией. Поэтому колебания ионов, усилившиеся в данной части металла вследствие нагревания, сейчас же передаются соседним ионам, от них - следующим и т.д., и тепловое состояние металла быстро выравнивается; вся масса металла принимает одинаковую температуру.
По плотности металлы условно подразделяются на две большие группы: легкие металлы, плотность которых не больше 5 г/см3, и тяжелые металлы - все остальные.
Частицы металлов, находящихся в твердом и жидком состоянии, связаны особым типом химической связи - так называемой металлической связью. Она определяется одновременным наличием обычных ковалентных связей между нейтральными атомами и кулоновским притяжением между ионами и свободными электронами. Таким образом, металлическая связь является свойством не отдельных частиц, а их агрегатов.
Химические свойства металлов
Взаимодействие с простыми веществами:
1. с галогенами:
Na + Cl2 ? 2NaCl
2. с кислородом:
4Al + 3O2 ? 2Al2O3
В реакциях с галогенами и кислородом металлы наиболее энергично проявляют восстановительные способности.
3. с серой:
2Na + S ? Na2S
4. с азотом:
3Mg + N2 ? Mg3N2
5. с фосфором:
3Ca + 2P ? Ca3P2
6. с водородом:
Ca + H2 ? CaH2
Наиболее активные металлы главных подгрупп являются сильными восстановителями, поэтому восстанавливают водород до степени окисления -1 и образуют гидриды.
Взаимодействие со сложными веществами:
1. с кислотами:
2Al +3H2SO4 ? Al2(SO4)3 + 3H2
2Al + 6H + 3SO4 ? 2Al + 3SO4 + 3H2
2Al + 6H ? 2Al + 3H2
Металлы, которые в электрохимическом ряду напряжений металлов находятся до водорода, восстанавливают ионы водорода из разбавленных кислот, а те, которые находятся после водорода, восстанавливают атом основного элемента, образующего данную кислоту.
2. с водными растворами солей:
Zn + Pb(NO3)2 ? Zn(NO3)2 + Pb
Zn + Pb + 2NO3 = Zn + 2NO3 + Pb
Zn + Pb = Zn + Pb
При взаимодействии с водными растворами солей металлы, находящиеся в электрохимическом ряду напряжений металлов левее, восстанавливают металлы, находящиеся в этом ряду правее от них. Однако металлы с сильными восстановительными свойствами (Li, Na, K, Ca) в этих условиях будут восстанавливать водород воды, а не металл соответствующей соли.
3. с водой:
Самые активные металлы реагируют с водой при обычных условиях, и в результате этих реакций образуются растворимые в воде основания и выделяется водород.
2Na + 2HOH ? 2NaOH + H2
Менее активные металлы реагируют с водой при повышенной температуре с выделением водорода и образованием оксида соответствующего металла.
Zn + H2O ? ZnO +H2
Характеристика металлов главной подгруппы I группы.
Главную подгруппу I группы периодической системы составляют литий Li, натрий Na, калий K, рубидий Rb, цезий Cs и франций Fr.
Все щелочные металлы имеют один s-электрон на внешнем электронном слое, который при химических реакциях легко теряют, проявляя степень окисления +1. Поэтому щелочные металлы являются сильными восстановителями. Радиусы их атомов возрастают от лития к францию. Электрон внешнего слоя с возрастанием радиуса атома находится все дальше от ядра, силы притяжения ослабевают и, следовательно, увеличивается способность к отдаче этого электрона, т.е. химическая активность. В электрохимическом ряду напряжений металлов все щелочные металлы стоят левее водорода. Все щелочные металлы в твердом состоянии хорошо проводят электрический ток. Они легкоплавки, быстро окисляются на воздухе, поэтому их хранят без доступа воздуха и влаги, чаще всего под керосином. Щелочные металлы образуют соединения с преимущественно ионной связью. Оксиды щелочных металлов - твердые гигроскопичные вещества, легко взаимодействующие с водой. При этом образуются гидроксиды - твердые вещества, хорошо растворимые в воде. Соли щелочных металлов, как правило, тоже хорошо растворяются в воде.
Все щелочные металлы - очень сильные восстановители, в соединениях проявляют единственную степень окисления +1. Восстановительная способность увеличивается в ряду --Li-Na-K-Rb-Cs. Все соединения щелочных металлов имеют ионный характер. Практически все соли растворимы в воде.
1. Активно взаимодействуют с водой:
2Na + 2H2O ? 2NaOH + H2- 2Li + 2H2O ? 2LiOH + H2-
2. Реакция с кислотами:
2Na + 2HCl ? 2NaCl + H2
3. Реакция с кислородом:
4Li + O2 ? 2Li2O(оксид лития) 2Na + O2 ? Na2O2(пероксид натрия) K + O2 ? KO2(надпероксид калия)
На воздухе щелочные металлы мгновенно окисляются. Поэтому их хранят под слоем органических растворителей (керосин и др.).
4. В реакциях с другими неметаллами образуются бинарные соединения:
2Li + Cl2 > 2LiCl(галогениды) 2Na + S ? Na2S(сульфиды) 2Na + H2 > 2NaH(гидриды) 6Li + N2 ? 2Li3N(нитриды) 2Li + 2C > 2Li2C2(карбиды)
Реагируют со спиртами и галогенопроизводными углеводородов (смотри "Органическую химию") 5. Качественная реакция на катионы щелочных металлов - окрашивание пламени в следующие цвета:
Li+ - карминово-красный Na+ - желтый K+, Rb+ и Cs+ - фиолетовый
Характеристика элементов главной подгруппы II группы.
Главную подгруппу II группы Периодической системы элементов составляют бериллий Be, магний Mg, кальций Ca, стронций Sr, барий Ba и радий Ra.
Атомы этих элементов имеют на внешнем электронном уровне два s-электрона: ns2. В хим. реакциях атомы элементов подгруппы легко отдают оба электрона внешнего энергетического уровня и образуют соединения, в которых степень окисления элемента равна +2.
Все элементы этой подгруппы относятся к металлам. Кальций, стронций, барий и радий называются щелочноземельными металлами.
В свободном состоянии эти металлы в природе не встречаются. К числу наиболее распространенных элементов относятся кальций и магний. Основными кальцийсодержащими минералами являются кальцит CaCO3 (его разновидности - известняк, мел, мрамор), ангидрит CaSO4, гипс CaSO4 · 2H2O , флюорит CaF2 и фторапатит Ca5(PO4)3F. Магний входит в состав минералов магнезита MgCO3, доломита MgCO3 · CaCo3, карналлита KCl · MgCl2 · 6H2O. Соединения магния в больших количествах содержатся в морской воде.
Свойства. Бериллий, магний, кальций, барий и радий - металлы серебристо-белого цвета. Стронций имеет золотистый цвет. Эти металлы легкие, особенно низкие плотности имеют кальций, магний, бериллий.
Радий является радиоактивным химическим элементом.
Бериллий, магний и особенно щелочноземельные элементы - химически активные металлы. Они являются сильными восстановителями. Из металлов этой подгруппы несколько менее активен бериллий, что обусловлено образованием на поверхности этого металла защитной оксидной пленки.
1. Взаимодействие с простыми веществами. Все легко взаимодействуют с кислородом и серой, образуя оксиды и сульфаты:
2Be + O2 = 2BeO
Ca + S = CaS
Бериллий и магний реагируют с кислородом и серой при нагревании, остальные металлы - при обычных условиях.
Все металлы этой группы легко реагируют с галогенами:
Mg + Cl2 = MgCl2
При нагревании все реагируют с водородом, азотом, углеродом, кремнием и другими неметаллами:
Ca + H2 = CaH2 (гидрид кальция)
3Mg + N2 = Mg3N2 (нитрид магния)
Ca + 2C = CaC2 (карбид кальция)
Карибит кальция - бесцветное кристаллическое вещество. Технический карбит, содержащий различные примеси, может иметь цвет серый, коричневый и даже черный. Карбит кальция разлагается водой с образованием газа ацетилена C2H2 - важного продукта хим. промышленности:
CaC2 + 2H2O = CaOH)2 + C2H2
Расплавленные металлы могут соединяться с другими металлами, образуя интерметаллические соединения, например CaSn3, Ca2Sn.
2. Взаимодействуют с водой. Бериллий с водой не взаимодействует, т.к. реакции препятствует защитная пленка оксида на поверхности металла. Магний реагирует с водой при нагревании:
Mg + 2H2O = Mg(OH)2 + H2
Остальные металлы активно взаимодействуют с водой при обычных условиях:
Ca + 2H2O = Ca(OH)2 + H2
3. Взаимодействие с кислотами. Все взаимодействуют с хлороводородной и разбавленной серной кислотами с выделением водорода:
Be + 2HCl = BeCl2 + H2
Разбавленную азотную кислоту металлы восстанавливают главным образом до аммиака или нитрата аммония:
2Ca + 10HNO3(разб.) = 4Ca(NO3)2 + NH4NO3 + 3H2O
В концентрированных азотной и серной кислотах (без нагревания) бериллий пассивирует, остальные металлы реагируют с этими кислотами.
4. Взаимодействие с щелочами. Бериллий взаимодействует с водными растворами щелочей с образованием комплексной соли и выделением водорода:
Be + 2NaOH + 2H2O = Na2[Be(OH)4] + H2
Магний и щелочноземельные металлы с щелочами не реагируют.
5. Взаимодействие с оксидами и солями металлов. Магний и щелочноземельные металлы могут восстанавливать многие металлы из их оксидов и солей:
TiCl4 + 2Mg = Ti + 2MgCl2
V2O5 + 5Ca = 2V + 5CaO
Бериллий, магний и щелочноземельные металлы получают электролизом расплавов их хлоридов или термическим восстановлением их соединений:
BeF2 + Mg = Be + MgF2
MgO + C = Mg + CO
3CaO + 2Al = 2Ca + Al2O3
3BaO + 2Al = 3Ba + Al2O3
Радий получают в виде сплава с ртутью электролизом водного раствора RaCl2 с ртутным катодом.
Получение:
1) Окисление металлов (кроме Ba, который образует пероксид)
2) Термическое разложение нитратов или карбонатов
CaCO3 -t°? CaO + CO2-
2Mg(NO3)2 -t°? 2MgO + 4NO2- + O2-
Характеристика элементов главной подгруппы III группы. Алюминий.
Алюминий находится в главной подгруппе III группы периодической системы. На внешнем энергетическом уровне атома алюминия имеются свободные р-орбитали, что позволяет ему переходить в возбужденное состояние. В возбужденном состоянии атом алюминия образует три ковалентные связи или полностью отдает три валентных электрона, проявляя степень окисления +3.
Алюминий является самым распространенным металлом на Земле: его массовая доля в земной коре составляет 8,8%. Основная масса природного алюминия входит в состав алюмосиликатов - веществ, главными компонентами которых являются оксиды кремния и алюминия.
Алюминий - легкий металл серебристо-белого цвета, плавится при 600°C, очень пластичен, легко вытягивается в проволоку и прокатывается в листы и фольгу. По электропроводности алюминий устпает лишь серебру и меди.
Взаимодействие с простыми веществами:
1. с галогенами:
2Al + 3Cl2 ? 2AlCl3
2. с кислородом:
4Al + 3O2 ? 2Al2O3
3. с серой:
2Al + 3S ? Al2S3
4. с азотом:
2Al + N2 ? AlN
С водородом алюминий непосредственно не реагирует, но его гидрид AlH3 получен косвенным путем.
Взаимодействие со сложными веществами:
1. с кислотами:
2Al + 6HCl ? 2AlCl3 + 3H2
2. со щелочами:
2Al + 2NaOH + 6H2O ? 2Na[Al(OH)4] + 3H2
Если NaOH в твердом состоянии:
2Al + 2NaOH + 6H2O ? 2NaAlO2 + 3H2
3. с водой:
2Al + 6H2O ? 2Al(OH)3 + 3H2
Свойства оксида и гидроксида алюминия:
Оксид алюминия, или глинозем, Al2O3 представляет собой белый порошок. Оксид алюминия можно получить, сжигая металл или прокаливая гидроксид алюминия:
2Al(OH)3 ? Al2O3 + 3H2O
Оксид алюминия практически не растворяется в воде. Соответствующий этому оксиду гидроксид Al(OH)3 получают действием гидроксида аммония или растворов щелочей, взятых в недостатке, на растворы солей алюминия:
Страницы: 1, 2
|