скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Розробка схеми приймача цифрової тропосферної станц скачать рефераты

p align="left">Розглянемо особливості приймальних модулів АФАР. В модулі по схемі рис. 9,а сигнал приймається випромінювачем, підсилюється, фазується і поступає в систему первинної обробки синалів, яка в найпростішому випадку представляє собою багатоканальний суматор, на інші входи якого поступають вихідні сигнали інших модулів.

а)

б)

Рис. 9. Приймальні модулі АФАР

В модулі по схемі рис. 9,б додатково включено змішувач і ППЧ, що з одного боку вимагає в складі АФАР ще однієї розподільчої системи для підведення потужності гетеродина до всіх модулів, а з іншого боку, розподільча система для підключення виходу кожного модуля до системи первинної обробки сигналів виявляється простіша, так як на проміжній частоті неточності довжин ліній передачі значно менше впливають на ідентичність фазочастотних характеристик модулів [14]. Крім того, фазоповертачі можуть розташовуватися в тракті гетеродина і відповідно, виконуються на фіксованій частоті або в тракті проміжної частоти і виконуються більш точними і дешевими. Чутливість АФАР повинна бути більша за чутливість пасивної ФАР, в противному випадку АФАР не буде мати одної з основних переваг у порівнянні з пасивною ФАР. Це обмеження пред'являє певні вимоги до підсилювачів і шумових властивостей вузлів приймального модуля. Для коефіцієнта шуму модуля по схемі рис. 9:

( 6)

і - коефіцієнт шуму і коефіцієнт потужності МШП;

- коефіцієнт шуму вхідного пристрою підлюченого до виходу системи первинної обробки;

і - втрати на фазоповертачі та суматорі (в системі первинної обробки сигналів).

Аналогічно для коефіцієнта шуму модуля пасивної ФАР:

( 7)

Поділивши рівняння ( 7) на ( 6) ми одержимо енергетичний виграш, який забезпечить АФАР у порівнянні з пасивною ФАР:

( 8)

Максимально великий виграш реалізується при достатньо великому коефіцієнті :

( 9)

Відповідний виграш можна одержати при:

, ( 10)

Наприклад:

;

;

.

Максимальний виграш при (17 дБ), а оптимальний виграш . Для модуля з перетворенням частоти максимальний виграш також оцінюється по формулі ( 9). Ідентичність фазочастотних характеристик модулів зазвичай досягається відомими прийомами гібридно-інтегральних технологій. Але вона ще може досягатися також раціональною будовою функціональних схем модулів, в основі яких закладені різні методи самокомпенсації нестабільних фазових відхилень. Наприклад, в приймальних модулях по схемі рис. 10 ідентичність фазових відхилень здійснюється за допомогою відомого методу «подвійного частотного переносу». Як відмічалось нестабільність частоти та фази допоміжного генератора в фільтрах побудованих на основі цього методу, компенсується. Якщо джерело сигналу та гетеродина поміняти місцями, тобто напругу корисного сигналу подати синфазно на обидва змішувачі, а напругу гетеродина тільки на один змішувач, то напруга на виході другого змішувача буде залежати від фазових зсувів МШП. Крім того, в такому модулі не потрібен керуючий фазоповертач, так як незалежно від фази сигналу на виході модуля фаза вихідного сигналу буде визначатися фазою гетеродину [14].

Рис. 10. Приймальний модуль АФАР

Однак певна будова модуля АФАР може бути використана тільки для певного класу приймальних сигналів. Як наголошувалось, призначення АФАР в багатьох випадках виявляє схемну побудову модуля. Наприклад, в самофазуючихся антенних решітках (додавання всіх елементів в них відбувається незалежно від фазового фронту падаючої хвилі) приймальні модулі побудовані з використанням фазової автопідстройки частоти. На рис. 11 представлені дві функціональні схеми таких модулів.

Рис. 11,а. Схема модуля АФАР

Рис. 11,б. Схема модуля АФАР

В модулі по схемі рис. 11,а фаза опорного сигналу задається спеціальним опорним генератором, частота якого близька до частоти приймаємого сигнала . Сигнал від випромінювача через змішувач подається на фазовий детектор, де відбувається його порівняння по фазі з опорним сигналом [14]. З виходу фазового детектора сигнал помилки пропорційний різниці фаз прийнятого і опорного сигналів діють на генератор керуємий напругою, частота вихідних коливань якого залежить від керуючої напруги. Замкнутий ланцюг зворотнього зв'язку ГКН-змішувач встановлює рівність фаз прийнятого сигналу на виході змішувача і опорного сигналу. Перевагою такого модуля являється відсутність шуму в опорному сигналі. Його використання доцільне, якщо частота приймаємого сигналу відома на перед з високою точністю, так як ГКН повинен зкомпенсувати зсув частоти в наслідок нестабільності передавача.

В модулі по схемі рис. 11,б в якості опорного використовується сигнал з виходу суматора вихідних напруг всіх модулів. Не дивлячись на те, що в опорному сигналі такого модуля є шуми (опорним сигналом являється прийнятий і усереднений сигнал) перешкодостійкість його може бути не гірше ніж модуля за схемою рис. 11,а, що пояснюється можливістю звуження шумової смуги системи ФАПЧ, так як в даному випадку доплерівський зсув частоти присутній в опорному сигналі і компенсації підлягають лише нестабільність частоти передавача та повільне зміщення фази сигналів в кожному модулі.

Іншим прикладом, коли функціональна схема модуля і параметри вхідних в нього вузлів визначаються призначенням АФАР, являється прийомо-передавальний модуль перевипромінюючої АФАР. Як віломо із теорії ФАР, для роботи перевипромінюючої ФАР необхідно створити у випромінювачах фазове розподілення комплексно спряжене фазовому розподілу для прийнятого сигналу, яке можливо отримати різними способами.

На рис. 12 приведена функціональна схема прийомо-передавального модуля, в якому спряження фазових зсувів здійснюється за допомогою перетворення частоти прийнятого сигналу.

Рис. 1 Функціональна схема прийомо-передавального модуля АФАР

На виході змішувача маємо сигнал:

. ( 11)

Якщо частота гетеродина , то перший доданок в цьому виразі має фазу , спряжену фазі отримуємого сигналу. Як видно спряжені по фазі сигнали отримано тут шляхом інвертування спектру прийнятого сигналу. В модуляторі на сигнал із спряженою фазою накладається інформація і здійснюється зсув сигналу по частоті. Потім сигнал посилюється і перевипромінюється [14]. Зсув по частті дозволяє збільшити розв'язку приймальної і передавальної частини модуля за допомогою смугового фільтра налаштованого на приймаємий сигнал.

Розглянуті ФАР мають значні переваги перед звичайними антенами, що і було доведено вище, але перспективна тропосферна станція з цифровою обробкою інформації передбачає більш досконалий антенний пристрій.

Ключовим рішенням стало використання (вперше для вирішення такої задачі) прийомо-передавальної ЦАР, в якій здійснюється цифрове формування променів, характеристики направленості. На сучасних ЦАР при 128 активних дипольних елементах комплект процесорів обробки сигналів дозволяє формувати одночасно 250-300 променів, звичайно для ТРС такі можливості не потрібні, отже є можливість зменшити кількість елементів ЦАР і обчислювальні потужності процесорів, що звичайно підвищить надійність станції, а головне зменшить вартість обладнання.

Цифрове формування променів - єдина на сьогодні технологія, що дозволяє ефективно реалізувати динамічну адаптацію постійного зв'язку на основі оперативного перенаправлення цифрових прийомо-передавальних променів з метою адекватного реагування на зміни тропосфери.

Група променів, що синтезується, наприклад по алгоритму швидкого перетворення Фур'є, або за допомогою класичних процедур дискретного Фур'є аналізу, є по суті сукупністю «просторово-частотних фільтрів», кожен з яких пропускає строго визначений набір сигналів і подавляє інші, одночасно приймаємих в широкому просторовому секторі як перешкоди.

Для реалізації такого підходу необхідно суттєво переглянути традиційні технологічні рішення, на яких раніше базувалося створення ФАР. На відміну від схемотехніки ФАР, в кожному приймальному каналі ЦАР замість фазоповертачів встановлюються АЦП, що виконують багаторозрядне квантування по рівню і дискретизації по часу.

В схемі приймального сегмента ЦАР передбачено аналогове формування в приймальних каналах квадратурних складових прийнятих сигналів з відцифровкою кожної із квадратур окремим АЦП.

При цьому розводка тактуючих сигналів на всі АЦП здійснюється від єдиного задаючого генератора, для того щоб усі перетворювачі спрацювали строго синхронно по розкриву ЦАР.

Сукупність цифрових відліків напруг багатосигнальної суміші через високошвидкісний інтерфейс поступає на процесор формування характеристик направленості, що орієнтує максимум променя «вторинного канала» на максимальний сигнал від кореспондента. Тим самим здійснюється первинна просторова селекція синалів від кореспондента. Далі отримані відгуки «вторинних каналів» незалежно обробляються канальними процесорами, виконуючи виділення каналів із змінною смугою пропускання, квадратурно-фазову демодуляцію сигналів і декодування повідомлень по встановленому стандарту.

Функціонування канальних процесорів має певну особливість, а саме відліки сигналів поступають не в темпі аналого-цифрового перетворення, а з необхідним інтервалом для виконання операції цифрового фазового перетворення.

Для узгодження темпів діаграмоутворення (сотні кГц) з періодом дискритизації АЦП (десятки-сотні МГц) необхідно використовувати цифрові фільтри, які будуть накопичувати в жорстко відведених інтервалах часу (стробах) відліки сигналів, отриманих з виходів АЦП. Крім проріджування інформаційного потоку без втрат в енергетиці, такий принцип обробки дозволить декоррелювати шуми, провести додаткову частотну селекцію, підвищити відношення сигнал/шум за рахунок когерентного додавання напруг сигналів суміші. Крім того, сам процес синтезу променів шляхом їх зваженого фазованого додавання, подібно цифровій фільтрації, супроводжується нарощуванням миттєвого динамічного діапазону системи (для 128 елементної антенної решітки Thuraya приріст потужності може складати дБ), що служить базою для досягнення високої перешкодозахищеності і якості зв'язку.

Розрахунок малошумлячого підсилювача потужності

Малошумлячий підсилювач застосовується для підвищення чутливості радіоприймального пристрою [13]. Найбільш важливими електричними параметрами МШП являється:

- коефіцієнт шуму NМШП або шумова температура ТМШП;

- резонансний коефіцієнт підсилення Кр МШП;

- відносна смуга пропускання ПМШП/fср.

Рис. 13. Шумові температури і коефіцієнти шуму різних типів МШП в залежності від частоти: 1 - КПП; 2 - ПДП; 3 - ПНП охол. 20 К; 4 - ППТ охол. 20 К; 5 - ПНП охол. 78 К; 6 - ПНП неохол.; 7 - ПТД; 8 - ППТ неохол.; 9 - ПБТ неохол.; 10 - ЛБХ; 11 - змішувачі на ДБШ

Іншими характеристиками, які враховують при визначенні можливості і доцільності використання МШП, являється: потужність насичення по входу Рнас, при якій амплідудна характеристика МШП стає нелінійною; стабільність параметрів при впливі різних дестабілізуючих факторів, маса і габаритні розміри.

В таблиці 1 приведені основні дані МШП, що працюють в НВЧ діапазоні, на різній елементній базі. На рис. 13 зображено графіки залежності шумової температури і коефіцієнта шуму, різних типів МШП від частоти.

Таблиця 1. Основні дані малошумлячих підсилювачів на НВЧ

Тип підсилювача

Частота, ГГц

Смуга, %

Підси-лення на каскад, дБ

Темпера-турна нестабі-льність, дБ/град.

Часова неста-біль-ність, дБ/12 год.

Динаміч-ний діапазон, дБ

Маса, кг

Об'єм, см3

Шумова темпера-тура, К

КПУ бігучої хвилі

1,1…4,0

0,12…5,5 (0,2…2,2)

11…52 (20…30)

±(0,1…0,2)

50…80

8…400

(50…1000) · ·103

4…20

УДП (4 К)

1…300

4

5…20

60

15…150

(50…200) · ·103

15…50

ППУ охолоджуємі

0,3…35

12

15…20

15…50

ППУ неохолоджуємі

0,3…50

0,2…40 (0,5…70)

3…45 (17…30)

0,3

±(0,1…1)

65…90 (70…80)

2…30

(1,5…45) · ·103

30…300

УПТ (20 К)

1…20

60

5…10

15…60

УПТ неохолоджуємі

0,5…40

60

5…10

50…1000

УБТ неохолоджуємі

0,1…16

4…80

5…10

0,04

±0,5

80…100

0,1…0,4

45…1800

80…5000

УТД неохолоджуємі

0,25…20

1,7…6,7 (3,6…18)

5…20 (12…20)

0,001…0,3 (0,02…0,06)

±0,5

50…90 (65…70)

0,1…12

30…27·103

250…1200

Підсилювачі на ЛБХ

0,25…100

6,7…120 (36…67)

25…60 (25…35)

0,01…0,07 (0,02)

63…100 (70…90)

1,2…23

450…20·103

300…3000

Для отримання необхідних характеристик МШП перед розрахунком необхідно правильно вибрати елементну базу на якій буде побудовано МШП, а тому доцільно є розглянути основні підсилювальні елементи на основі яких працюють МШП.

Найменш шумлячими із існуючих підсилювачів являються молекулярні, квантові, парамагнітні підсилювачі - їх шумова температура в сантиметровому діапазоні хвиль порядку 10 К. Однак в КПП необхідно охолоджувати парамагнітну речовину до температури рідкого гелію (4 К), що вимагає використання дорогих кріогенних установок, що обмежує область застосування цього виду підсилювачів.

В широкому діапазоні частот, включаючи міліметрові хвилі можуть бути використані підсилювачі на джозефсонівських переходах, котрі працюють при гелійових температурах. Джозефсонівські переходи з малою ємністю можуть використовуватися для параметричного підсилення слабких НВЧ сигналів, при чому накачкою може слугувати як зовнішнє джерело, так і власна джозефсонівська генерація переходу (самонакачка).

ПДП застосовуються, головним чином, в радіоастрономії, але дуже ефективно використання джозефсонівських переходів в якості нелінійних елементів в схемах змішувачів міліметрового діапазону. ПДП мають найбільш високу частотну межу і володіють шумовою температурою 15…50 К, по шумам лише трохи гірше ніж КПП.

Майже таку шумову температуру мають параметричні напівпровідникові підсилювачі, якщо їх охолодити до температури рідкого азоту (78 К) або водню (20 К), що пов'язано з меншими технічними труднощами. Шумова температура охолоджуємих ПНП порядку 17…20 К при водневому рівні і 50 К при азотному рівні, що дозволяє ефективно їх використовувати в системах супутникового зв'язку. Якщо охолодити ПНП до гелієвої температури можливо отримати практично таку ж шумову температуру, як і в КПП.

Неохолоджуємі ПНП працюють без кріогенної апаратури в широкому діапазоні частот (0,3…50 ГГц), що дозволяє отримати порівняно низькі шумові температури 30…300 К (в залежності від частоти). Ці переваги визначають широке застосування ПНП в радіолокації, супутниковому зв'язку і деяких інших областях радіотехніки.

Останнім часом ПНП починають витісняти підсилювачі на польових і біполярних транзисторах. Особливо велике розповсюдження отримали в інтегральних схемах на НВЧ підсилювачі на польових транзисторах з бар'єром Шоткі на основі арсенід галію. На частотах до 3 ГГц ПБТ майже не поступається за параметрами ППТ, але з підвищенням частоти перевага на боці польових транзисторів. Особливістю ПТШ являється переважно теплова природа його шумів, тому охолодження призводить до значного зменшення коєфіцієнту шуму. ППТ, охолоджені до водневої температури має майже такі шуми, як ПДП і охолоджені ПНП, і в схемному і в конструктивному відношенні значно простіші останніх [10].

Дещо гіршими ніж ПНП і ППТ шумовими властивостями володіють підсилювачі на тунельних діодах, які в сантиметровому діапазоні мають шумову температуру порядку 300 К. ПТД використовують головним чином в сантиметровому діапазоні, хоча можуть працювати в діапазоні від 0,25 до 25 ГГц.

Більш шумлячими, але більш широкосмуговими являються підсилювачі на ЛБХ. В діапазоні від 0,25 до 100 ГГц шумові температури підсилювачів на ЛБХ лежать в межах від 300 до 3000 К.

МШП на ЛБХ являються нерегенеративними, електровакуумними, електронно-променевими підсилювачами, що працюють в прохідному режимі. Підсилення сигналу в ЛБХ відбувається завдяки взаємодії уповільненого електромагнітного поля сигналу і електронного пучка, для фокусування якого застосовуються соленоїди або постійні магніти. Підсилювачі на ЛБХ являються найбільш широкосмуговими, так як в них не використовуються резонаторні системи і їх діапазон обмежується лише пристроями вводу і виводу енергії.

Основними перевагами ЛБХ являються: широкосмуговість (в деяких випадках до 120%); висока стабільність параметрів (крім фазової нестабільності); висока стійкість до перенавантаження НВЧ потужністю (Р=0,2…3 Вт), що дозволяє спростити схему захисту входу приймача і відповідно зменшити втрати на шуми.

Основним недоліком ЛБХ можна вважати відносно високий (для МШП) коефіцієнт шуму, котрий в сантиметровому діапазоні рівний 5…10 дБ і лише трохи менший, ніж у малошумлячих змішувачів; великі габаритні розміри, маса і споживаєма потужність, визначаємі необхідністю в соленоїдах, або в постійних магнітах і в високовольтних випрямлячах від декількох сот вольт (в сантиметровому діапазоні) до 2…3 кВ (в міліметровому діапазоні).

Відповідно застосування ЛБХ доцільно в тих випадках, коли необхідно максимально можливе перекриття по частоті при відносно високому коефіцієнті шуму, великих габаритах та масі і немає жорстких вимог до фазової стабільності і споживаємої потужності [14].

Враховуючи дані, що наведені в таблиці 1, на рис. 13, а також на основі проведеного аналізу підсилювачів в залежності від елементної бази доцільним є проведення розрахунку саме параметричного підсилювача на напівпровідниковому діоді, еквівалентна схема якого приведена на рис. 14.

а)

б)

Рис. 14. Еквівалентна схема ДПП (а) і його сигнального контуру (б)

Вихідні дані:

- коефіцієнт шуму NМШП? 3 дБ;

- резонансний коефіцієнт підсилення КМШП= 15 дБ;

- середня частота пропускання (по рівню 3 дБ) fс0= 4,5 ГГц;

Розрахунок:

1. Для забезпечення стабільності параметрів підсилювача при вимірюванні імпедансу ланцюгів джерел сигналу (наприклад, антени) і навантаження (наприклад, змішувача) в якості феритового циркулятора застосуємо п'ятиелементний циркулятор, побудований на основі Y-циркулятора. В такому циркуляторі втрати сигналу до входу підсилювача рівні . На стільки ж ослаблюється підсилений сигнал, поступаючий з підсилювача до виходу циркулятора.

Отже, сам підсилювач без циркулятора з врахуванням заданих параметрів повинен мати коефіцієнт шуму і резонансний коефіцієнт підсилення .

3. Оскільки заданий коефіцієнт шуму досить низький і робоча довжина хвилі мала, то для розрахунку доцільно використати параметричний діод D5147G, який має дуже малу сталу часу ф та індуктивність вводів :

; ;

; ; ; ; .

4. Необхідна напруга зміщення розраховується по формулі:

( 12)

5. Ємність знаходиться по формулі:

( 13)

Сталу часу при робочому зміщенні знаходимо:

( 14)

6. Коефіцієнт модуляції і критичну частоту діода визначаємо по формулам:

( 15)

( 16)

7. Поправочний коефіцієнт , враховуючи втрати в конструкції підсилювача приймаємо рівним . Тоді знаходимо

,

еквівалентний опір втрат

,

а динамічну добротність діода визначаю по формулі:

.

8. Оптимальне відношення частот визначаємо по формулі:

,

а відповідний йому мінімальний коефіцієнт шуму

,

,

при цьому вважаємо, що фізична температура діода рівна нормальній температурі навколишнього середовища, тобто Тд=Т0=290 К. розраховане значення задовольняє вимогам .

9. Визначемо значення холостої частоти . Для того, щоб отримати максимально можливу смугу пропускання підсилювача, не застосовуючи спеціальних елементів для її розширення, і спростити топологічну схему підсилювача, в якості холостого контура використовуємо послідовний контур, утворений ємністю та індуктивністю вводів діода. Ланцюг струму холостої частоти замкнено розімкнутим чвертьхвильовим шлейфом, що підключений паралельно діоду і має вхідний опір близький до нуля. В цьому випадку на холостий контур не впливають ланцюги сигналу і накачки, а також ємність корпусу діода . Резонансна частота цього контуру рівна частоті послідовного резонансу діода

.

10. При цьому відношення частот , а частота накачки

.

11. Розрахунок коефіцієнта шуму підсилювача отиманим значенням дає практично ту ж величину , що і при оптимальному відношенні частот . Цей результат обумовлений тим, що в нашому розрахунку значення і досить близькі, а крива залежності має тупий мінімум.

1 «Холодний» КСХ сигнального ланцюга підсилювача, який вимагається забезпечити для отримання резонансного підсилення визначається по формулі:

( 17)

.

Звідси знаходимо необхідний опір джерела сигналу , що приведено до зажимім нелінійної ємності послідовній еквівалентній схемі

; .

Розраховані значення і забезпечують підбором узгоджуючих елементів сигнального ланцюга підсилювача, що зазвичай виконується експерементально.

13. Розрахуємо смугу пропускання Ппу, для чого задамося коефіцієнтами включення ємності в холостий мвкл х і сигнальний мвкл с контури. Оскільки холостий контур має найпростішу структуру і реалізується на зосереджених елементах діода і чвертьхвильовому розімкнутому шлейфі, можна сподіватися на досить добре включення ємності в контур і прийняти мвкл х= 0,5. Сигнальний контур має більш складну структуру, так як на ряду з елементами холостого контуру включає в себе ємність корпусу діода Скон, узгоджуючі шлейфи і шлейф, режектуючий частоту накачки. Виходячи з цього, будемо мати на увазі мвкл с= 0, Тоді отримаємо полосу пропускання:

( 18)

,

яка задовільняє вимогам.

14. Визначемо необхідну потужність накачки підсилювача. Для

, а n=2 i q=0,4

і розрахуємо потужність накачки, що розсіюється в діоді по формулі:

Для частоти інтерполяцію значення коефіцієнта знаходимо , а потужність накачки, яку необхідно підвести до підсилювача визначаємо по формулі:

.

Отже розрахунок МШП довів правильність вибору підсилювального елемента і виконання поставлених вимог [14].

Висновки

1. Розроблена схема приймача з цифровою обробкою інформації, і висунуті вимоги до нього. Проведено аналіз аналого-цифрового перетворювача і висунуті вимоги до цього важливого елемента приймального тракту.

Проведено порівняльний аналіз фазованої антенної решітки і цифрової антенної решітки. Обґрунтовано доцільність використання цифрових антенних решіток в якості антенного пристрою перспективної тропосферної станції.

3. Проведено аналіз елементної бази малошумлячого підсилювача і розраховано параметричний підсилювач на діодах для його використання в якості малошумлячого підсилювача. Це дозволить знизити коефіцієнт шуму та підвищити чутливість приймача.

Страницы: 1, 2