скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Розробка схеми приймача цифрової тропосферної станц скачать рефераты

Розробка схеми приймача цифрової тропосферної станц

Розробка схеми приймача цифрової тропосферної станції

1. Схема приймального тракту

В класичному понятті приймальний тракт складається з антенно-фідерного пристрою, самого приймача і приймальної частини каналоутворюючого обладнання.

Каналоутворююче обладнання в даній роботі не розглядається, а основний наголос зроблено на сам приймач і запропоновано нові принципи реалізації антенного пристрою для розробляємого приймача ТРС з цифровою обробкою інформації [12].

Розробляємий приймальний тракт, що зображений на рис. 1, складається з таких основних елементів:

- антенно-фідерний пристрій;

- канальний тракт;

- спеціалізована електронно-обчислювальна машина;

- приймальна частина типової апаратури ущільнення.

Рис. 1. Приймальний тракт цифрової ТРС

Кількість канальних трактів рівна числу елементів ЦАР. На рис. 2 зображена схема канального тракту.

Рис. Схема канального тракту

Всі канальні тракти ідентичні і складаються з:

- малошумлячого підсилювача потужності;

- блока перетворювача частоти та підсилювача проміжної частоти.

Розроблений приймальний тракт містить одну антену, яка складається з n елементів, які рознесені у просторі й приймають широкосмуговий сигнал від антени кореспондента.

Сигнали з n елементів ЦАР поступають по n незалежним канальним трактам підсилюються в МШП і поступають на блок проміжної частоти, де відбувається перенесення сигналів з робочої на проміжну частоту 70 МГц. Після підсилення сигнал поступає на вхід АЦП в якому відбувається перетворення сигналу із аналогового до цифрового виду і після чого сигнали n канальних трактів поступають на вхід спеціалізованої ЕОМ.

АЦП являється дуже важливою частиною приймача. До АЦП висуваються дуже жорсткі вимоги.

Значне розповсюдження широкодіапазонних програмуємих приймачів сигналів вимагає від виробників весь час удосконалювати перетворювачі, а саме покращувати параметри по змінному струму, шумовим і динамічним характеристикам, підвищення розрішуючої можливості, швидкості перетворення аналогового сигналу в цифровий вид із заданою якістю.

Одним із варіантів побудови АЦП є схема паралельного перетворювача, яка приведена на рис. 3.

Рис. 3. Паралельний АЦП

Для кожного можливого вхідного рівня використовується один компаратор і загальний вихідний сигнал отримуємо у вигляді двійкового коду шляхом відповідного декодування. Звичайний аналоговий компаратор доцільно розглядати, як одно розрядний паралельний перетворювач і якщо він являється фіксуючим пристроєм, то отримуємо вже перетворювач з регістром на виході [14].

Такий перетворювач має внутрішню архітектуру конвеєрного типу, завдяки чому цифрову обробку одного відліку можна здійснювати із записом наступного відліку. Таким чином виникає можливість здійснювати перетворення дуже швидко: новий результат з'являється на кожному такті. В такому випадку необхідна велика кількість компараторів (256 для 8-ми розрядного перетворювача), що визначає відносно високу ціну пристрою. Декілька років назад такий перетворювач являвся значною частиною обладнання, але останні досягнення схемотехніки дозволяють виконати необхідні перетворювачі в інтегральному вигляді, що значно зменшує їх масогабаритні показники.

Крім складності побудови, багато розрядні паралельні АЦП мають обмежену точність із-за вхідних напруг зміщення компараторів. Різниця сусідніх напруг може складати лише декілька мілівольт і якщо сумарне зміщення пари сусідніх компараторів перевищує цю величину, логічний стан в неправильній послідовності поступає на логічну схему декодування. Навіть якщо логіка роботи схеми передбачає це, помилка все ж таки неминуча.

Дана проблема вирішується при реалізації перетворювача такого типу у вигляді інтегральної схеми. Останнім часом перетворювачі реалізуються в інтегральній схемі на КПОМ-структурі, в якому вище вказана проблема вирішується шляхом автокомпенсації зміщення нуля кожного компаратора на протязі частини циклу перетворення. В схемі з автокомпенсацією на вхід кожного компаратора підключається конденсатор, з'єднаний з відповідною точкою опорного сигналу, а вихід компаратора з'єднаний з його ж входом. Тому конденсатор заряджається до напруги, рівної сумі напруги точки опорного сигналу і напруги зміщення компаратора. На протязі другої частини циклу конденсатор підключається до точки подачі вхідного сигналу: в той же час кільце зворотнього зв'язку компаратора розривається, різниця напруг в точках подач вхідного і опорного сигналів впливає на компаратор і відповідний сигнал з'являється на виході. Великі комутуємі струми конденсаторів призводять до деякого балансування, а отримання низького вхідного опору зазвичай не являється проблемою в високошвидкісних системах, де застосовуються ці пристрої [12].

Доцільно розглянути варіант побудови АЦП за принципом послідовного наближення. Перетворювачі послідовного наближення реалізуються на основі ЦАП і логічної системи, яка керує ЦАП до моменту узгодження його вихідного сигналу з вхідним аналоговим сигналом АЦП. В даному випадку цифровий вихід ЦАП буде відповідати вимагаємому вихідному цифровому сигналу АЦП. Спрощена блок-схема пристрою зображена на рис. 4. Регістр послідовного наближення представляє собою ту логічну систему, яка реалізує визначений алгоритм.

Рис. 4. Блок-схема перетворювача послідовного наближення

В компараторі відбувається порівняння вхідного сигналу з вихідним сигналом ЦАП, а результат логічної обробки знову поступає на регістр, вихідний цифровий сигнал якого в кінці перетворення буде відповідати вимагаємому значенню.

Часова діаграма роботи перетворювача приведена на рис. 5. Як видно із діаграми, сигналом з регістра послідовного наближення СЗР встановлюється логічна «1», а всі інші розряди - логічний «0». Це значення відповідає половині повної шкали перетворення, і після першого періоду тактового сигналу на регістр послідовного наближення з виходу компаратора приходить сигнал логічного порівняння сигналу на виході ЦАП з вхідним аналоговим сигналом. Якщо вхідний сигнал більше сигналу на виході ЦАП, то в регістрі послідовного наближення стан логічної «1» СЗР зберігаються; якщо менше, то СЗР скидається в «0» і встановлюється в стан логічної «1» другий значущий розряд [13].

Рис. 5. Часова діаграма роботи перетворювача

І така процедура буде повторюватися до тих пір, поки не буде встановлений в стан логічної «1» МЗР і не проаналізований, як і всі попередні розряди. На рис. 6 зображено розвиток процесу послідовного наближення в аналоговому вигляді і те яким чином відбувається отримання правильного результату для конкретного значення аналізуємого сигналу.

Рис. 6. Послідовне наближення

Для кращого розуміння роботи АЦП послідовного наближення доцільно зобразити блок-схему алгоритму процесу послідовного наближення за допомогою «логічного аналізатора» і «осцилографа», що і зображено на рис. 7.

Якщо розглядати програмну реалізацію, то функцію регістра послідовного наближення може виконувати комп'ютер при організації відповідних апаратних зв'язків, що має суттєве значення при практичній реалізації розробленого приймача, а також повинно враховуватися при розробці спеціалізованої ЕОМ і програмного забезпечення для її функціонування. На думку провідних вчених в даній галузі, досить легко створити таку систему, яка б працювала як ЦАП або як АЦП послідовного наближення в залежності від програмного управління [10].

Отже розглянуті вище схеми АЦП мають ряд недоліків і переваг в кожній з них. АЦП паралельного типу має дуже високу швидкодію, що дуже важливо враховуючи те, що процес перетворення сигналу з аналогового в цифровий вид необхідно проводити на частоті 70 МГц, а в перспективі на робочій частоті станції, що досить суттєво зменшить вартість і масо-габаритні показники приймача та підвищить відношення сигнал/шум за рахунок відсутності блоку ПЧ. АЦП паралельного типу має відносно низький рівень точності процесу перетворення, що не можливо не враховувати.

Рис. 7. Спрощений алгоритм послідовного наближення

Проаналізувавши дві схеми АЦП, доцільно висунути ряд вимог до схеми АЦП, яку необхідно розробити для даного приймача, а саме:

- швидкодія процесу перетворення сигналу повинна бути дуже високою, порядку сотні МГц, з перспективою переходу на робочу частоту станції;

- процес перетворення сигналу повинен проходити з максимальною точністю;

- процес перетворення сигналу повинен контролюватися за допомогою спеціалізованої ЕОМ;

- схема АЦП повинна бути реалізована у вигляді мікросхеми, що значно зменшить її масо-габаритні показники;

- важливою вимогою до АЦП є його вартість, адже враховуючи велику кількість АЦП в одному приймачі, їх ціна повинна бути низькою.

Варіанти антенних пристроїв тропосферної станції

Доцільним буде розглянути такий важливий елемент, розробленого приймача, як антенний пристрій. В розробленому приймачі велика увага приділяється саме антенному пристрою в зв'язку з тим, що саме він визначає параметри приймача в цілому.

Розробка структурної схеми приймального тракту для систем тропосферного зв'язку має на меті модернізацію його основних складових на основі сучасних досягнень радіоелектроніки. В даній роботі запропонована розробка приймальної антени, як складової приймального тракту, на основі використання цифрових антенних решіток, а також, як варіант обробки сигналів в антенних решітках запропоновано метод максимальної правдоподібності.

В багатьох практичних задачах радіолокації, радіонавігації, радіозв'язку необхідно знати кутові координати джерел випромінювань, що одночасно формують сигнали з однаковими несучими частотами. До подібних сигналів відносяться навмисні перешкоди, що створюються противником із різних точок простору працюючим радіоелектронним засобам, а також природні завади, котрі обумовлені особливостями розповсюдження сигналів в навколоземному просторі, що призводить до багатопроменевості в точці прийому.

Як показує аналіз [6], системи обробки сигналів на фоні неізотропних за простором (локальних) завад доцільно будувати на базі антенних решіток по схемі з компенсацією завад на виходах зформованих допоміжних просторових сигналів. Останні забезпечують оптимальне виділення локальних завад на фоні внутрішніх шумів і мають такі ж діаграми направленості, як і сигнальний (основний) канал. Для формування допоміжних каналів у складі РЕЗ необхідно мати спеціальний пристрій оцінки числа і кутових параметрів ДВ, алгоритм функціонування якого можуть бути засновані на спектральних методах оцінки. Відомо [8], що спектральні методи оцінки на основі даних вимірів, що отримані за допомогою АР, дозволяють зформувати максимально достовірні оцінки кутових координат ДВ. Задача визначення напрямку ДВ за допомогою АР еквівалентна задачі оцінки спектру сигналу [5]. Алгебраїчний підхід до обробки сигналів в АР дозволяє створювати все нові алгоритми спектральної оцінки. На сьогодні відома досить велика кількість вказаних методів.

Одним з найбільш відомих алгоритмів обробки сигналів в АР, що володіє достатньо високою вирішуючою здатністю, являється метод максимальної правдоподібності. Цей алгоритм вперше був запропонований Кейпоном [7]. Відповідна оцінка будується шляхом знаходження вектора пеленгаційного (опорного) напрямку А, при введені якого результуючий сигнал має максимальну потужність при обмеженні , де F0 - являє собою вектор, що характеризує ідеальну плоску хвилю, що розповсюджуються по лінії візирування. Зміст прийнятого обмеження заключається в тому, що для кожного напрямку спостереження рівень приймаємого сигналу під час обробки АР не змінювався.

Для знаходження комплексного вектора А мінімізується функція , де - множник Лагранжа. В результаті рішення приймає вигляд [5]:

. ( 1)

Потужність результуючого сигналу АР, що орієнтована в напрямку, котрий заданий вектором F0, описується виразом:

. ( 2)

Дж.Кейпон назвав оцінкою високого вирішення, так як описаний вище метод оцінки володіє досить високою вирішуючою здатністю. Спектральна оцінка за даним методом описує відносні компоненти спектру і не є оцінкою істинної спектральної щільності потужності [8]. Тому назва методу є не зовсім точною, так як даний метод не дає оцінку максимальної правдоподібності для функції спектральної щільності потужності. До переваг максимальної правдоподібності оцінки необхідно віднести те, що вона дає спектр, висоти піків в якому, прямо пропорційні потужності гармонік, котрі присутні в аналізуємому процесі.

Згідно виразу ( 2) процес визначення спектру складається з двох етапів.

На першому етапі по вхідним даним x обраховується матриця R.

На другому етапі задається деякий початковий опорний напрям r і, відповідно, початковий вектор F0, для якого розраховується значеня РМП. Потім вводиться наступне значення опорного напрямку і розрахунок повторюється. Розрахунок проводиться у всьому допустимому діапазоні кутів візирування в окремих напрямках, що розміщенні досить близько. Оскільки метод МП відноситься до групи послідовних методів, далі відшукуються положення максимумів. За положенням останніх оцінюється кутові координати ДВ, а за їх кількістю - кількість ДВ. Поряд із алгоритмом ( 2) Кейпона для оцінки кутових координат ДВ можна застосувати статистики Кейпона:

. ( 3)

Необхідність використання статистики Кейпона виникає під час прийому негаусівських та нестаціонарних сигналів ДВ великої інтенсивності [8]. Необхідно зауважити, що в подібній ситуації кращі показики мають більш складні за розрахунком, але близькі за структурою алгоритми за статистиками «відношення Релея» і «теплового шуму», що мають відповідно вигляд:

; ( 4)

. ( 5)

Оцінка кутових координат, що пеленгуються ДВ, знаходяться за максимумом функцій, котрі описують дані статистики, шляхом послідовного пошуку. Для більш повного розуміння значення саме антенного пристрою у формуванні параметрів приймача, необхідно розглянути варіанти побудови антен. Для практичної реалізації антени в розробленому приймачі раціонально застосувати фазовану антенну решітку. Фазована антенна решітка не являється чимось новим у сучасній техніці, вона широко використовується в радіолокації, але саме застосування її в якості антени в техніці зв'язку є досить перспективним. На сучасному етапі розвитку модулі, які застосовуються в активних фазованих решітках, мають в своєму складі керуємі фазоповертачі, схеми управління та контролю. Крім того, специфіка АФАР, які будуть застосовуватися в техніці зв'язку внесе свої особливості в функціональну схему модуля. Загальною вимогою для модулів АФАР являється ідентичність їх фазочастотних характеристик, причому при роботі приймальних модулів в умовах значної зміни рівня вхідного сигналу (що особливо важливо в тропосферному зв'язку) додається також вимога ідентичності фазоамплітудних характеристик

Рис. 8,б. Прийомо-передавальний модуль АФАР

Розглянемо особливості побудови функціональних схем прийомо-передаючих модулів АФАР. На рис. 8. зображено схеми прийомо-передаючих модулів з перетворенням і без перетворення частоти відповідно.

Особливістю модуля виконаного по схемі рис. 8,а, являється застосування множників частоти на чотири як в приймальній так і в передаючій частині. Це в свою чергу дозволяє, по-перше, підвищити діапазон робочих частот модуля, по-друге, реалізувати фазоповертачі на більш низькій частоті і з меншими фазовими зсувами. Як видно зі схеми, в приймальній частині модуля відсутній МШП. Принцип роботи такого модуля заключається в слідуючому: в режимі прийому за допомогою двох перемикачів на змішувач подаються потужності вхідного сигналу і гетеродину, а в режимі передачі за допомогою цих же перемикачів на випромінювач подається потужний вихідний сигнал модуля. Недоліком модуля являється те, що перемикач, підключений до випромінювача, в режимі передачі працює на високому рівні потужності, що знижує ККД модуля. Даний недолік відсутній в модулі, що зображений на рис. 8,б, за рахунок введення циркулятора. Перемикач винесений в приймальну частину модуля, яка крім нього мітить в своєму складі діодний обмежувач, МШП, фільтр і дискретний атенюатор. Фазоповертач в ній використовується і на прийом і на передачу. Так як обидва перемикачі працюють на низькому рівні потужності, вони можуть бути уніфікованими. Дискретний атенюатор дозволяє синтезувати діаграму направленості АФАР в режимі прийому.

Страницы: 1, 2