скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Разработка пакета программ для расчета фазированной антенной решетки скачать рефераты

ткрыть файл с именем ФАР_вз_связь, имеющий расширение mcd;

В разделе Исходные данные для расчета ввести числовые значения указанных там параметров, указывая размерность для абсолютных величин;

После ввода исходных данных для начала вычисления нужно нажать клавишу F9, если в установках не указано автоматическое вычисление. Ошибки, которые могут возникнуть на этом этапе - это пустое поле одной из входных величин или же неверно указанная (или вовсе неуказанная) размерность величины. Признаком начала вычислений служит мигающая лампочка курсора. Время вычисления зависит от типа процессора и составляет для ФАР размера 4х4 около 10 минут при использовании процессора Pentium II 650 MHz.

По окончании расчетов (признаком окончания является возвращение обычной стрелки курсора) должны быть построены графики, выведены числовые значения, которые могут быть скопированы и через буфер обмена экспортированы в другие пакеты (например Word).

3.2.4 Описание программы

Программа
ФАР_вз_связь.mcd является центральной программой пакета и выполняет расчет определение полевых и импедансных характеристик ФАР с учетом и без учета взаимной связи между излучателями. Результаты расчета в виде файлов данных являются исходными для программы полоса.

Алгоритм расчета взаимного сопротивления, используемый для расчетов, основан на методе бесконечных периодических структур, описанный подробно в [1, 2] и в разделах 2.1 и 2.2 данной дипломной работы.

Блок-схема программы представлена на рис. 3.2. В программе можно выделить три части, обозначенные в тексте программы в виде заголовков:

Исходные данные для расчета

В этой части производится ввод следующих параметров ФАР:

f0, f - центральная частота и частота для расчетов;

Nx, Ny - количество излучателей вдоль оси ОХ, OY;

dx, dy - шаг решетки вдоль оси ОХ, OY;

a, b - ширина и длина одиночного излучателя;

d1, d2 - толщина слоев диэлектрической подложки;

е1, е2, м1, м2 - диэлектрическая и магнитная проницаемость слоев;

Дx, Дy - величина пъедестала амплитудного возбуждения;

иmax, цmax - углы фазирования АР;

сл - волновое сопротивление линии питания.

Основные расчетные соотношения

В этой части находятся все расчетные функции и формулы (для удобства использования программы эта громоздкая часть свернута в закрытую область, которую можно просмотреть раскрыть двойным щелчком по стрелке-указателю области), вычисляющие:

входное сопротивление одиночного излучателя в составе бесконечной периодической решетки Zвх(Dr) (2.4);

взаимное сопротивление Zz (2.8);

матрицу взаимных сопротивлений Z (2.12);

матрицу токов [I] согласно (2.16);

входное сопротивление излучателя с учетом взаимной связи Zвхсв (2.17);

входное сопротивление ФАР при двоично-этажной схеме питания ZвхАРпаралл;

входное сопротивление ФАР при последовательной схеме питания ZвхАРпосл;

КСВ, Г.

Вывод результатов

В этой части строится график диаграммы направленности ФАР с учетом и без учета взаимной связи, выводится массив взаимных сопротивлений Z другие результаты расчета функций, представленный в предыдущем пункте.

Остановимся подробнее на второй части программы. Основу алгоритма расчета взаимного сопротивления составляет функция вычисления входного сопротивления излучателя в составе бесконечной периодической решетки. Расчет массива входных сопротивлений Za, выполняемый данной функцией, занимает основную часть машинного времени, поэтому оптимизации функции было уделено особое внимание. Блок-схема функции приведена на рис. 3.3. Массив входных данных представляет собой значения расстояний от крайнего излучателя (0; 0) до излучателей, расположенных на одном угловом направлении от него (рис. 2.5), и значения кратные этим расстояниям, сформированные в соответствии с рядом простых чисел, которые используются в процедуре (2.8). Из этого массива последовательно извлекается числовые значения, начиная с наименьшего, и проводится расчет входного сопротивления.

Согласно (2.4), расчет входного сопротивления необходимо производить путем интегрирования и суммирования в бесконечных пределах, что невозможно реализовать численными методами. Требуется ограничивать эти пределы, что неизбежно приводит к ошибке вычисления. Максимальное количество гармоник определяется величиной Nmax. Сложность заключается и в том, что эта величина зависит от расстояния Dr: чем больше расстояние между излучателями, тем больше требуется гармоник. Это приводит к тому, что время расчет входного сопротивления с ростом расстояния значительно увеличивается. С другой стороны, с ростом расстояния входное сопротивление излучателя в составе бесконечной периодической решетки изменяется слабо и в пределе стремится к собственному входному сопротивлению излучателя. Это обстоятельство и заложено в основу функции расчета сопротивления одиночного излучателя. Тем самым, требуется установить какой-либо критерий, по которому входное сопротивление уже бы не рассчитывалось, если оно с ростом Dr изменяется незначительно. Для этого вводится величина Zdelta=|Znext-Zprev/Zprev|, представляющая собой относительную разность между вновь рассчитанным значением сопротивления Znext и предыдущим значением Zprev. Если величина Zdelta при очередном вычислении становится меньше устанавливаемой константы Ztol, то дальнейший расчет сопротивлений прекращается, а для последующих элементов из массива расстояний Dr, если они еще имеются, присваивается значение входного сопротивления, равное последнему рассчитанному.

Взаимное сопротивление вычисляется функцией Zz в соответствии с (2.8). Как уже отмечалось выше, взаимное сопротивление между разными парами будет совпадать, если излучатели в этих парах расположены под одним углом и на одинаковом расстоянии. Поэтому рассчет проводится только между крайним излучателем (0; 0) и всеми остальными излучателями ФАР. Остальные элементы в матрице взаимных сопротивлений (2.12) заполняются из соответствия углов и расстояний.

Как уже отмечалось ранее, собственное входное сопротивление излучателя можно вычислить используя функцию расчета входного сопротивления излучателя в составе бесконечной периодической решетки. Для этого выбирается период решетки равный 5л, при таком расстоянии взаимное сопротивление пренебрежимо мало по сравнения с собственным сопротивлением.

Входное сопротивление ФАР при двоично-этажной схеме питания (ZвхАРпаралл) и при последовательной схеме питания (ZвхАРпосл) вычисляется на основе пересчитанных на край кромки входных сопротивлений излучателей. Эти сопротивления, определяемые через формулу для длинных линиях

, (3.1)

пересчитываются ко входу л/4 трансформаторов. Трансформаторы располагаются на входе ФАР и предназначены для согласования сопротивления излучателей и волнового сопротивления линии питания сл на центральной частоте f0. Поскольку согласование не является идеальным в полосе частот, в программе предусмотрен расчет КСВ и Г, характеризующие степень согласованности ФАР с линией питания.

Диаграмма направленности ФАР без учета взаимной связи рассчитывается по заданным параметрам амплитудного распределения и шага решетки по (2.24). Для учета взаимной связи при расчете множителя направленности АР по (2.23) используется комплексная амплитуда тока, рассчитанная по (2.16).

Рис. 3.2 Блок - схема программы ФАР_вз_связь

Рис. 3.3 Блок - схема функции расчета входного сопртивления излучателя в составе бесконечной периодической структуры

Массив рассчитанных значений входного сопротивления излучателя в составе бесконечной периодической решетки и массив, составленый из исходных данных, сохраняется в файле данных в той же директории, что и программа. Файл имеет название DataZ_*_***_MHz.prn, где первое число * - относительная диэлектрическая проницаемость второго слоя подложки, второе число *** - значение частоты, на которой проводился расчет (например, DataZ_2.6_1680_MHz.prn).

3.3 Программа для характеристик ФАР в полосе частот

3.3.1 Описание применения

Программа, имеющая название
ФАР_полоса.mcd, выполняет расчет характеристик плоской ФАР, выполненной из полосковых вибраторов или резонансных излучателей на многослойном диэлектрической подложке, с учетом и без учета взаимной связи между излучателями в полосе частот. В программе рассматривается два варианта схемы питания ФАР: последовательная и ддвоично-этажная («елочка»). Кроме того, в программе предусмотрена возможность расчета согласующих л/4 трансформаторов и выбор типа согласования (задается переменной Type) либо по входному сопротивлению, полученному без учета (Type=0), либо по сопротивлению, полученному с учетом взаимной связи (Type=1).

Программа применяется после того, как был проведен расчет на фиксированных частот с помощью программы ФАР_вз_связь.mcd. Выходными данными программы являются:

график КСВ, входного сопротивления при последовательной схеме питания в полосе частот;

график КСВ, входного сопротивления при двоично-этажной схеме питания в полосе частот;

диаграмма направленности ФАР с учетом и без учета взаимной связи, построенная при двух выбранных частотах;

входное сопротивление одиночного излучателя в полосе частот;

Входными данными являются файлы (DataZ_*_***_MHz.prn), формируемые программой ФАР_вз_связь.mcd. Количество подключаеиых файлов должно быть не менее трех.

3.3.2 Методика испытаний

Объектом испытаний является файл с именем
ФАР_полоса.mcd, который является программой для расчета полевых и импедансных характеристик ФАР в полосе частот. Целью испытаний является проверка точности работы программы на конкретной вычислительной установке. Во время испытаний следует проверить прохождение контрольного примера при решении задачи с различными входными параметрами. Испытания следует проводить на той же вычислительной установке, на которой планируется эксплуатация программы.

Для проведения испытаний нужно иметь:

установленный математический пакет Mathcad 2001 или его более поздние версии;

файл с именем ФАР_полоса.mcd;

не менее трех файлов данных с общем именем DataZ_*_***_MHz.prn;

таблицу тестовых результатов.

В качестве тестовой задачи выступает определение характеристик ФАР с параметрами, представленными в разделе 3.2.2. Исходными данными являются файлы данных с именами DataZ_2.6_1600_MHz.prn, DataZ_2.6_1680_MHz.prn, DataZ_2.6_1740_MHz.prn, которые должны находиться в той же директории, где расположен файл ФАР_полоса.mcd, тексты этих файлов приведены в приложении 1. В самой программе в таблице Frequency необходимо ввести числовые значения 1600,1680,1740 в произвольном порядке, если в таблице есть другие значения, то их надо удалить. Кроме того, надо указать еdiel=2.6, Type=1.

В результате должна быть построена ДН, КСВ (рис. 4.9 , 4.10) и получены следующие числовые значения:

3.3.3 Руководство пользователя

Программа ФАР_полоса.mcd является дополнением к центральной программе пакета ФАР_вз_связь.mcd и выполняет расчет полевых и импедансных характеристик ФАР с учетом и без учета взаимной связи между излучателями в полосе частот.

Программа разработана в рамках математического пакета для инженерных расчетов Mathcad 2001 Professional. Требования к ресурсам вычислительной техники представлены в разделе 3.2.3 данной дипломной работы.

Для выполнения программы необходимо:

Загрузить математический пакет Mathcad 2001;

Открыть файл с именем ФАР_полоса, имеющий расширение mcd;

В разделе Исходные данные для расчета в таблице Frequency необходимо ввести числовые значения не менее трех частот. В директории, где расположена программа ФАР_полоса, должны находиться файлы данных с именами, соответствующими введенным значениям частот (например, если в таблице были введены числа 1670,1680,1690, то должны быть файлы DataZ_2.6_1670_MHz.prn, DataZ_2.6_1680_MHz.prn, DataZ_2.6_1690_MHz.prn). Если таких файлов данных не существует, то необходимо перейти в программу ФАР_вз_связь и провести последовательно расчет на каждой из интересующих частот. Кроме того, следует ввести значение относительной диэлектрической проницаемости второго слоя подложки в поле еdiel. Это сделано для того, чтобы можно было проводить анализ характеристик ФАР при различных материалах подложки.

Для начала вычислений нужно нажать клавишу F9, если в установках не указано автоматическое вычисление. Ошибки, которые могут возникнуть на этом этапе - это отсутствие одного или нескольких подключаемых файлов данных. Проверьте в директории, где расположена программа ФАР_полоса, наличие всех файлов данных. Признаком начала вычислений служит мигающая лампочка курсора. Время вычислений незначительно (до 1 мин.)

По окончании расчетов (признаком окончания является возвращение обычной стрелки курсора) должны быть построены графики, выведены числовые значения, которые могут быть скопированы и через буфер обмена экспортированы в другие пакеты (например Word). Поскольку для построения графиков используется интерполяция расчетных точек, может возникнуть ситуация, когда интерполированный график выходит за границы физической реализуемости параметров (например, КСВ<1, Re(Zвх)<0). Для устранения этого явления рекомендуется дополнить количество расчетных точек, выполнив вычисления в программе ФАР_вз_связь на частоте, где происходит искажение величины.

3.3.4 Описание программы

Программа
ФАР_полоса.mcd является дополнением к центральной программе пакета ФАР_вз_связь и создана для удобства обработки результатов. Расчет в полосе частот можно было бы производить и в рамках одной программы ФАР_вз_связь, но это потребовало бы значительных одновременных затрат ресурсов вычислительной техники (до 1 часа). При расчете характеристик ФАР последовательно на каждой из частот существует возможность прервать вычисления на одной из них при получении некорректного результата или при выходе результата за границы интересующего диапазона.

Алгоритм расчета, используемый в данной программы, совпадает с алгоритмом программы ФАР_вз_связь (рис.3.2). Подробное его описание можно найти в разделе 3.2.4. Отличие заключается в том, что в программе не проводится расчет массива входных сопротивлений излучателя в составе бесконечной периодической решетки Za. Этот массив считывается с файлов данных. Кроме того, пользователем не вводятся исходные данные для расчета, они также считывается с файлов данных.

Главной особенностью программы является построение характеристик ФАР (КСВ, Zвх) в полосе частот. Количество расчетных точек должно быть не менее трех, верхний предел не ограничен, но исходя из значительных затрат машинного времени не может быть несколько десятков, которое требуется для построения гладких графиков. Для решения этой проблемы в программе предусмотрена интерполяция расчетных точек полиномом второй степени, которая осуществляется с помощью встроенной функции математического пакета.

3.4 Программа для расчета входного сопротивления изолированного излучателя

3.4.1 Описание применения

Программа, имеющая название
рез_размер.mcd, проводит расчет входного сопротивления изолированного одиночного излучателя, выполненного на многослойном диэлектрической подложке, при различной геометрии излучателя (размера a и b). Программа применяется для того, чтобы выбрать резонансный размер излучателя, при котором Xвх=0. Выбранный размер используется в дальнейшем в программе ФАР_вз_связь.mcd. Выходными данными программы являются:

график активной части входного сопротивления излучателя в зависимости от его длины b;

график реактивной части входного сопротивления излучателя в зависимости от его длины b;

Входные данные задаются пользователем вручную в тексте программы, состав входных данных представлен в разделе 3.4.4.

3.4.2 Методика испытаний

Объектом испытаний является файл с именем
рез_размер.mcd, который является программой, позволяющей определить резонансный размер излучателя. Во время испытаний следует проверить прохождение контрольного примера при решении задачи с различными входными параметрами. Испытания следует проводить на той же вычислительной установке, на которой планируется эксплуатация программы.

Для проведения испытаний нужно иметь:

установленный математический пакет Mathcad 2001 или его более поздние версии;

файл с именем рез_размер.mcd;

значения входных данных, приводимых ниже;

таблицу тестовых результатов.

В качестве тестовой задачи выступает определение резонансного размера квадратного излучателями при разных материалах подложки. Общие исходные данные следующие:

f0=1680 МГц;

d1=3 мм, d2=1 мм;

е1=1, е3=1, м1=1, м2=1, м3=1;

b0лmin=0,4;

b0лmax=0,6;

Nb0=3.

Для открытой структуры в зависимости от материала подлжки должны быть получены следующие резонансные размеры:

е2=1, a0л=b0л =0,463;

е2=2,6, a0л=b0л =0,424;

е2=5, a0л=b0л =0,405.

3.4.3 Руководство пользователя

Программа
рез_размер.mcd является дополнением к центральной программе пакета и позволяет определить резонансный размер одиночного излучателя, который используется в исходных данных для расчета программы ФАР_вз_связь.

Страницы: 1, 2, 3