скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Разработка конструкции и технологии микроэлектронного варианта формирователя опорной частоты 10 МГц скачать рефераты

p align="left">.

Расчетная величина площади подложки:

.

Выбираем типоразмер подложки №7 (Л1, табл 2.4): длина 20мм, ширина 16мм (допустимое отклонение ±0,1 мм).

В качестве материала подложки МСБ применим ситалл СТ50-1. Толщину подложки принимаем 0,5 мм.

Топология МСБ представлена в (приложении 4) данной работы. Топология изображена в масштабе 10:1 с шагом координатной сетки 0,01 мм. Элементы и компоненты располагаем как можно ближе, вход и выход пространственно развязываем.

Припуск на совмещение слоев МСБ принимаем равным 0,2 мм.

Минимальное расстояние между проводниками принимаем равным 0,2 мм.

Толщину проводников принимаем равной 0,2 мм.

Навесные компоненты приклеиваем в местах, помеченных прямоугольником и соединяем с соответствующими контактными площадками посредством пайки.

2. Разработка конструкции ФЯ

2.1 Оценка количества МСБ в составе ФЯ

В базовую МСБ (20х16 мм) входит 9 микросборок.

Размер базовой платы при этом становится 60х48 мм.

Рис.6 Базовая плата МСБ

Следовательно, число элементов и компонентов в базовой МСБ:

Мощность, потребляемая базовой МСБ:

- согласовано

В ФЯ установлено 6 МСБ, следовательно, мощность потребляемая ФЯ

В блоке установлено 5 ФЯ, следовательно, мощность потребляемая блоком

2.2 Разработка конструкции ФЯ

В качестве конструкции ФЯ принимает ФЯ на металлической раме. Жесткость рамки обеспечивается наружными 1 и внутренними 2 поперечными ребрами жесткости. Окно 3 в верхней части рамки предназначено для монтажа на печатной плате навесных элементов. Окно 4 - для соединения проволочных выводов МСБ с контактными площадками печатной платы. В зоне 5 располагаются контактные площадки внешних электрических соединений ФЯ. Под номером 6 показана планка и устанавливаемая на неё базовая плата МСБ под номером 7. Детализированный чертёж представлен в приложении Р-402.468759.008-01.

Рис.7 Эскиз конструкции рамки ФЯ

Определим геометрические размеры ФЯ

,

где - высота МСБ, - высота планки (), - толщина диэлектрической прокладки, - толщина печатной платы, - высота паек на печатной плате, суммарная толщина клеевых соединений, высота воздушных зазоров.

Высота МСБ

,

где - толщина подложки, - максимальная высота компонента на подложке.

, высота .

Толщина диэлектрической подложки между рамкой и печатной платой , выберем , толщину печатной платы , высота паек , толщина клеевой прослойки на каждую сторону.

Толщину воздушного прослоя выбираем , по 1.5мм на каждую сторону.

Получаем

Расчёт длины и ширины рамки производится по данным геометрических размеров и количества МСБ, размещённых на рамке. По размерам и числу МСБ, устанавливаемых на одной планке, находят размеры планок, к которым добавляют размеры других элементов рамки.

ФЯ содержит 3 планки МСБ расположены длинной стороной (60мм) поперек планки.

Ширина планки:

где - длина МСБ.

Длина планки:

где - число МСБ на планке;

-ширина подложки МСБ;

- расстояние между МСБ и горизонтальными ребрами жесткости рамки, примем .

Получим

Типовые размеры основных элементов ФЯ: ширина внешних рёбер жесткости 3мм, продольных внешних и внутренних - 5мм, ширина окна для навесных элементов 10мм, ширина окна для пайки выводов МСБ - 5мм, ширина зоны внешних соединений - 5мм.

Определим размеры ФЯ:

Ширина ФЯ

Сборочный чертёж в приложении Р-402.468759.008 СБ.

Считаем массу:

где - объем ФЯ,

- плотность материала ФЯ для алюминиевого сплава В95 (Л1, табл П 9.2). За счёт наличия окон и пустот, расчёт объёма ФЯ будет приблизительным.

Рассчитаем объём ФЯ путём складывания объёмов отдельных деталей конструкции ФЯ:

Общий вес ФЯ

2.3 Оценка вибропрочности ФЯ

Для оценки вибропрочности ФЯ выберем наихудшие условия транспортировки или эксплуатации. Проектируемое устройство может использоваться как в переносных так и стационарных системах, транспортировка осуществляется авиатранспортом.

Авиатранспорт имеет значения перегрузки в диапазоне 0.1…20 и частоту вибрации 5…2000Гц. Вес ячейки 0.4022Н.

Рамка ФЯ выполнена из алюминиевого сплава В95 с константами упругости , коэффициент Пуассона , толщина планок рамки 0.8мм.

Печатная плата крепится к рамке с помощью антивибрационного компаунда КТ-102 по всей поверхности прилегания. Материал платы - стеклотекстолит СФ-2Н-50-0,8, толщиной, соответственно, 0.8мм и , .

Влияние подложек на жесткость ФЯ несущественно, ими пренебрегаем.

Произведем оценку наиболее опасной при воздействии вибрации частоты механического резонанса ФЯ, путём выбора сечений с заведомо малым моментом инерции сечения.

Рассчитаем вибропрочность для поперечного сечения А-А, состоящего из элементарных прямоугольных фигур.

Зная цилиндрическую жесткость ФЯ: , определим жесткость печатной платы:

Для оценки жесткости рамки вычислим момент инерции сечения А-А. Для этого найдём моменты инерций сечений фрагментов:

Для определения момента инерции сечения А-А необходимо предварительно определить координату центра тяжести сечения А-А и расстояния между центром тяжести сечения А-А и центрами тяжести фрагментов 1, 2, 3.

Учитываем что фрагменты встречаются несколько раз.

Момент инерции сечения А-А:

Цилиндрическая жесткость рамки ФЯ

,

где - определяющий линейный размер, длина сечения.

Получаем жесткость на изгиб .

Для определения найдем массу единицы площади ФЯ

Коэффициент закрепления ФЯ при

Частота механического резонанса ФЯ будет равна

Проверим вибропрочность, принимаем коэффициент динамичности ФЯ , тогда из графика на рис.8 для найдем допускаемую перегрузку ФЯ.

Допустимая перегрузка ФЯ ›100, что выше значения заданного в ТЗ равное 20.

Теперь проведём расчёт вибропрочности для сечения B-B. Представим сечение В-В состоящим из двух прямоугольных фигур.

Проведём расчёт вибропрочности сечения В-В аналогично сечению А-А

Найдём моменты инерций сечений фрагментов:

Центр тяжести фрагмента сечения В-В

Момент инерции сечения В-В:

Цилиндрическая жесткость рамки ФЯ

,

где - определяющий размер, длина сечения..

Получаем жесткость на изгиб .

Для определения найдем массу единицы площади ФЯ

Коэффициент закрепления ФЯ при

Частота механического резонанса ФЯ будет равна

Проверим вибропрочность, принимаем коэффициент динамичности ФЯ , тогда из графика на рис.8 для найдем допускаемую перегрузку ФЯ, ›100, что выше значения заданного в ТЗ равное 20.

3. Оценка теплового режима

3.1 Выбор компоновочной и тепловой схемы ФЯ

Корпус рамки ФЯ выполнен из алюминиевых сплавов, покрытых лаком черным матовым, имеющий степень черноты т (Л2, П8.2).

При оценивании теплового режима конструкции будем считать, что теплообмен между корпусом и внешней средой осуществляется конвекцией, кондукцией (минимальная) и излучением, а передача тепла от МСБ к корпусу осуществляется кондукцией, излучением через «воздушный» зазор и конвекцией. Поверхность корпуса считаем изотермической. Тепловая схема блока представлена на рис. 10.

3.2 Расчёт теплового режима

Плата МСБ имеющая размеры 0,060x0,048x0,0025 м3 припаяна к технологической планке помещённая в корпус с размерами 0,13х0,056x0,006м3.

Рассеиваемая мощность блока равняется .

Температура окружающей среды tср=(-40…+80)°С.

Определяем площадь внешней поверхности корпуса микроблока:

Определяющий размер корпуса:

.

Задаемся перегревом корпуса Дt = 10°С относительно температуры среды и определяем среднее значение температуры:

°С

По номограммам на рис.12 находим конвективный коэффициент теплопередачи и коэффициент теплопередачи излучением от корпуса к среде

Вычислим суммарную тепловую проводимость между корпусом и средой в первом приближении:

Расчетное значение перегрева корпуса:

°С

Будем считать расчёт законченным, если выполнится условие . В первом приближении значит повторяем расчёт, приняв за .

Определяем среднее значение температуры во втором приближении

°С

По номограммам находим конвективный коэффициент теплопередачи и коэффициент теплопередачи излучением от корпуса к среде

Вычислим суммарную тепловую проводимость во втором приближении

Перегрева корпуса во втором приближении

Во втором приближении значит повторяем расчёт, приняв за .

Определяем среднее значение температуры в третьем приближении

°С

По номограммам находим конвективный коэффициент теплопередачи и коэффициент теплопередачи излучением от корпуса к среде

Вычислим суммарную тепловую проводимость в третьем приближении

Перегрева корпуса в третьем приближении

Во третьем приближении значит считаем что перегрев корпуса .

Следовательно, среднеповерхностная температура корпуса микроблока:

°С

Определяем поверхность нагретой зоны:

0,060x0,048x0,0025 0,13х0,056x0,006м3

.

Рассчитываем средний зазор между поверхностью нагретой зоны и корпусом:

.

Определяем коэффициент теплопередачи кондукцией через воздушный зазор между нагретой зоной и корпусом.

,

где:

- коэффициент теплопроводности воздуха.

Практика показывает, что коэффициент теплопередачи излучением от нагретой зоны к корпусу мало зависит от размеров нагретой зоны и корпуса и составляет приблизительно .

Определяем тепловую проводимость технологической пластины , на которых лежит МСБ. Без учета теплового сопротивления контакта между МСБ и технологической пластины определяется только материалом (сплав ВТ1-0, ) и геометрическими размерами.

,

Определим тепловую проводимость между нагретой зоной и корпусом:

.

Рассчитываем среднеповерхностную температуру нагретой зоны:

°С.

Определяем температуру в центре нагретой зоны . Экспериментально установлено, что для конструкций микроблоков, выполненных на металлических ФЯ, перегрев в центре нагретой зоны не превышает 2…5°С. Поэтому принимаем

°С.

3.3 Оценка требуемой системы охлаждения

Определим тепловой поток

По перечню элементов найдём допустимую рабочую температуру наименее теплостойкого элемента.

Наименее теплостойкий элемент - навесной резистор Р1-8 с

Определим минимальное давление окружающей среды:

По ТЗ понижение давления при ракетной РЭА составляет 2.5КПа, следовательно:

мм рт.ст.

Поверхностная плотность теплового потока:

где: Кн - поправочный коэффициент на давление окружающей среды.

Тогда:

По рисунку 13 определяем систему охлаждения

Для этого найдём допустимый перегрев в конструкции

Охлаждение системы можно обеспечить естественным и принудительным воздушным охлаждением.

4. Оценка надёжности конструкции

Определим электрическую нагрузку навесных компонентов.

Электрическую нагрузку транзистора принимаем равной 0,7.

Электрическую нагрузку резистора определяется отношением номинальной рассеиваемой мощности на навесном резисторе R1 (38.8мВт), к допустимой рассеиваемой мощности (0,63Вт). Т.е.

Электрическую нагрузку навесного конденсатора определяется отношением номинального наихудшего рабочее напряжение, прикладываемое к обкладкам конденсатора C1, -5В, к допустимому рабочему напряжению по ТУ-10 В. Тогда

Электрическую нагрузку плёночного резистора с Кф>1 рассчитана в пункте 1.5.1 и он не превышает 0,2.

Электрическую нагрузку плёночного резистора с Кф<1 рассчитана в пункте 1.5.1 и он равен 1.

По таблице поправочного коэффициента (Л.1 табл. П 10.2) определим поправочный коэффициент а, при максимальной температуре в центре нагретой зоны приведённой в таблице. Т.к. в таблице не приведена нужная температура, то составим полином Логранжа:

По таблице справочных данных для расчёта надёжности (Л.1 табл. П 10.1) найдём интенсивность отказов элементов РЭС.

Результаты представлены в таблице 3

По таблицам определим поправочные коэффициенты (Л.1 табл. П 10.4, П 10.5, П 10.6) найдем поправочные коэффициенты по условиям эксплуатации составляют самолётного РЭС , , .

Таблица 3

Наименование элемента

Поправочный коэффициент

Интенсивность отказов

Количество

Навесной конденсатор

2,118

0,15

4

Навесной резистор

1

0,06

6

Пленочный резистор Кф>1

0,689

0,03

2

Пленочный резистор Кф<1

5,631

0,03

4

Транзисторы

1,006

0,5

2

Генератор

1

0,6

1

Пайка навесного монтажа

-

0,03

13

Пайка печатного монтажа

-

0,01

6

Найдём надежность по внезапным отказам при заданном по ТЗ времени непрерывной работы (1000 часов):

.

Найдем среднее время наработки на отказ:

Вероятность безотказной работы за 1000 ч:

т.е. откажет 18 МСБ из 1000.

Литература

1. Основы конструирования и технологии РЭС: Учебное пособие для курсового проектирования / Авт.: В.Ф. Борисов, А.А. Мухин, В.В. Чермошенский и др. - М.: Изд-во МАИ, 2000.

3. Монтаж микроэлектронной аппаратуры. Г.Я. Гуськов, Г.А. Блинов, А.А. Газаров.

4. Методические указания к практическим занятиям по курсу «Конструирование и технология производства РЭА».В.С.Лукин, В.В. Чермошенский, Т.Л. Воробьёва. МАИ, 1981.

5. Сайты радиоэлектронных компонентов: www.chipdip.ru, www.bmgplus.ru, www.chipfind.ru

Приложение

Страницы: 1, 2