скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Разработка конструкции и технологии микроэлектронного варианта формирователя опорной частоты 10 МГц скачать рефераты

Разработка конструкции и технологии микроэлектронного варианта формирователя опорной частоты 10 МГц

Московский Авиационный Институт

Государственный Технический Университет

Курсовая работа

по курсу Основы конструирования и технологии производства РЭС

Разработка конструкции и технологии микроэлектронного варианта формирователя опорной частоты 10 МГц

Выполнил:

студент группы Р-402

vanish588

Консультант:

Чермошенский В.В.

1. Разработка конструкции МСБ

1.1 Анализ электрической схемы МСБ

Проектируемая схема формирователя опорной частоты в микроэлектронном исполнении, предназначена для использования в различных связных, телевизионных, навигационных комплексах.

Схема питается от системы, в которую устанавливается.

В схему формирователя включен кварцевый генератор с цепью обвязки. Схема имеет два идентичных выхода, для возможности подключения к ней двух потребителей опорной частоты, как правило, это приёмник и вычислительная плата.

При подключении питания необходимо соблюдать полярность.

Для питания МСБ необходимо напряжение 5 В, которое используется для питания кварцевого генератора, и питания транзисторов в выходной цепи.

В схеме используются высокочастотные транзисторы, включенные по схеме с общим коллектором (эммитерный повторитель), для того чтобы развязать по сопротивлениям выход схемы и сопротивление нагрузки кварцевого генератора.

Исходя из номиналов резисторов, целесообразно выполнить резисторы R1, R2 и R3, R4, R9, R10 навесными элементами SMD. Это позволит применять один резистивный материал для выполнения остальных резисторов, т.е. применять массовое производство плат.

Номиналы конденсаторов больше номиналов конденсаторов выполняемых в тонкоплёночном виде, поэтому конденсаторы тоже применим навесные SMD чипы, ниже подтвердим выбор расчётом.

Высокочастотные транзисторы выполняются в корпусном варианте, т. к. бескорпусные аналогичные транзисторы имеют более высокий коэффициент шумов и более высокую нестабильность частотных характеристик.

Кварцевый генератор имеет свой собственный корпус и устанавливается в корпус микросборки. Генератор имеет керамический SMD корпус 3,2 x 5 мм. Применение корпусного генератора обусловлено более высокой стабильностью выходной частоты. Условия эксплуатации генератора удовлетворяют техническому заданию.

1.2 Расчёт режимов работы схемных элементов по постоянному току

Расчёт схемы по постоянному току электрических режимов цепей и схемных элементов производится для определения максимально возможной мощности, рассеиваемой элементами схемы. Расчёт по известным номинальным значениям параметров элементов ведётся для «наихудшего случая». С этой целью исходная электрическая схема преобразовывается в эквивалентную, содержащую такое соединение схемных элементов с источником питания, при котором в цепях действуют максимальные токи(напряжения).

Рис.1 Эквивалентная схема МСБ для определения рассеиваемой мощности

Рис.2 Расчётные результаты из среды MicroCAP 9

Мощность рассеиваемая резисторами, равна сумме мощностей, рассеиваемых каждым резистором:

Корпусной транзистор AT-1433 (http://www.chipfind.ru):

- напряжение пробоя коллектора, эммитера

- максимально допустимый ток коллектора

- максимально допустимой мощностью рассеяния

- статический коэффициент передачи тока

Рис.2 Корпусной транзистор AT-41533

Кварцевый генератор ГК-CPPL-T5-A7BR-10М-PD (www.bmgplus.ru):

- потребляемый ток

- с потребляемой мощность

Рис.3 Корпусной кварцевый генератор ГК-CPPL-Т5-A7BR-10М-PD

Получается, полная рассеиваемая мощность МСБ будет вычисляться как сумма рассеиваемых мощностей на каждом элементе:

1.3 Выбор и обоснование элементной базы МСБ. Расчёт тонкопленочных элементов платы МСБ

Расчёт тонкоплёночных резисторов

Найдём оптимальное значение сопротивления квадрата резистивной пленки

Расчёт резистора R1:

Номинальное сопротивление резистора ; пределы допустимого в условиях эксплуатации изменения сопротивления резистора относительно номинала при фотолитографическом методе изготовления ; рассеиваемая мощность , максимальная положительная температура по ТЗ , время наработки на резистора .

Выбираем резистивный материал (Л1, табл 2.1) - сплав Кермет К50-С, имеющий величину сопротивления на квадрат резистивной плёнки , удельную мощность рассеяния , температурный коэффициент сопротивления (ТКС) .

Коэффициент формы . Фотолитографией возможно изготовление резисторов с коэффициентом формы . Получившийся коэффициент формы очень мал, поэтому получается нецелесообразно использовать резисторы в тонкоплёночном исполнении. Аналогичные результаты были получены для резисторов R2, R3, R4, R9, R10. Данные резисторы заменим навесными SMD чипами в корпусе 0603.

Расчёт резистора R5:

Номинальное сопротивление резистора ; пределы допустимого в условиях эксплуатации изменения сопротивления резистора относительно номинала при фотолитографическом методе изготовления ; рассеиваемая мощность , максимальная положительная температура по ТЗ , время наработки на резистора .

Выбираем резистивный материал (Л1, табл 2.1) - сплав Кермет К50-С, имеющий величину сопротивления на квадрат резистивной плёнки , удельную мощность рассеяния , температурный коэффициент сопротивления (ТКС) .

Коэффициент формы . Фотолитографией возможно изготовление резисторов с коэффициентом формы . В случае селективного травления проводящего и резистивного слоёв, контактные площадки выполняются без припуска на совмещение слоёв (Л1, Рис.2.1.а).

Относительная погрешность сопротивления за счёт влияния температуры эксплуатации . Так как МСБ перегревается также за счёт «внутренних» тепловыделений увеличим в 1,1 раза, получим . Относительная погрешность сопротивления за счёт старения . Относительная погрешность сопротивления за счёт переходного сопротивления между резистивным слоем и контактной площадкой принимается равной . Относительная погрешность обеспечения величины :

Погрешность коэффициента формы:

Ширина резистора , обеспечивающая получившееся :

где - абсолютные производственные погрешности изготовления при фотолитографическом методе.

Определим минимально допустимое значение ширины резистора с учётом обеспечения заданной мощности рассеяния:

Расчётное значение ширины резистора , при этом - технологически реализуемая ширина резистора.

Определим фактические геометрические размеры резистора:

Площадь резистивной полоски

Определяется фактическая нагрузка резистора по мощности:

Удельная мощность

Нагрузка по мощности

Определим фактическую погрешность коэффициента формы:

Аналогичным образом ведётся расчёт оставшихся резисторов проектируемой МСБ. Результаты расчётов тонкоплёночных резисторов представлены в виде таблицы:

Таблица 1

Поз. обозначе-ние

Номинал, допуск, мощность

Материал

Ом/кв

%

%

мм

мм

R1,R2

100Ом±5%

Кермет

5000

0,02

1,5

1

Навесной

R3,R4,

51Ом±5%

Кермет

5000

0,01

1,5

1

Навесной

R9,R10

51Ом±5%

Кермет

5000

0,01

1,5

1

Навесной

R5,R6

3.6кОм±5%

Кермет

5000

0.72

-2,64

1

2,63

1,89

0,65

-

R7,R8

5.6кОм±5%

Кермет

5000

1,12

-2,64

1

3,77

4,22

0,49

-

R11,R12

1кОм±5%

Кермет

5000

0,2

-2,64

1

3,77

0,75

0,20

-

Резисторы R1,R2: чип резистор 0.063Вт 0603 5% 100 Ом (http://www.chipdip.ru/product0/41371.aspx)

Резисторы R3,R4,R9,R10: чип резистор 0.063Вт 0603 5% 51 Ом (http://www.chipdip.ru/product0/50777.aspx)

Рис.3 Корпус SMD резисторов в корпусе 0603: R1, R2, R3, R4, R9, R10.

Расчёт тонкоплёночных конденсаторов

Расчёт конденсатора С1

Номинальная ёмкость конденсатора , эксплуатационная погрешность ; рабочее напряжение на конденсаторе , напряжение на конденсаторе , максимальная положительная и отрицательная температуры по ТЗ , , время работы

Выбираем материал диэлектрика (Л1, табл. 2.3) - стекло электровакуумное С41-1 с удельной ёмкостью , электрическая прочность , диэлектрическая проницаемость и температурным коэффициентом ёмкости .

Толщина диэлектрического слоя, обеспечивающая электрическую прочность конденсатора , а уровень удельной ёмкости .

Температурная составляющая погрешности:

- её для надёжности можно увеличить в 1.2 раза ,

- увеличим в 1.2 раза .

Погрешность за счёт старения: , погрешность верхней обкладки конденсатора.

где - относительная погрешность обеспечения . Примем .

Тогда

Удельная емкость, обусловленная конечной точностью изготовления размеров верхней обкладки ровна:

где - коэффициент формы тонкопленочного конденсатора, применим ;

- производственные погрешности изготовления длины и ширины конденсатора. При

Расчетное значение необходимо выбрать из условия: . Принимаем

Фактическое значение толщины диэлектрического слоя

Проверим напряженность электрического поля в конденсаторе:

Определим геометрические размеры конденсатора.

Площадь верхней (активной) обкладки:

Длина и ширина

;

Размеры нижней обкладки:

где . Примем

Тогда

Размеры диэлектрического слоя:

Фактическое значение погрешности активной площади:

Аналогичным образом рассчитаем оставшиеся конденсаторы проектируемой МСБ. Результаты расчётов тонкоплёночных конденсаторов представлены в виде таблицы:

Таблица 2

Поз. обозначе-ние

Номинал, допуск, мощность

Материал

С1

10мкФ±20%

Стекло электро-вакуумное С41-1

50000

5

141.42

142.02

142.62

200

9.2

С2

0.1мкФ±20%

Стекло электро-вакуумное С41-1

50000

5

14.14

14.74

15.34

2

9.2

С3,С4

0.01мкФ±20%

Стекло электро-вакуумное С41-1

50000

5

4.47

5.07

5.67

0.2

9.2

Из методических указаний следует, что в тонкоплёночном варианте выполняются конденсаторы номиналами от 10пФ до 0.01мкФ. Отсюда следует, что конденсаторы применяемые в МСБ, невыгодно применять в тонкоплёночном исполнении, что и подтверждено расчётами, приведёнными в таблице.

Все конденсаторы МСБ будут навесными элементами SMD чипы. Выберем конденсатор С1 SMD в корпусе 1812, а конденсаторы С2, С3, С4 SMD в корпусе 0402 (http://lib.chipdip.ru/235/DOC000235066.pdf).

Конденсатор С1: Керамический ЧИП конденсатор 47мкФ X5R 10% 10В 1812 (http://www.chipdip.ru/product/grm43er61a476k.aspx)

Конденсатор С2: Керамический ЧИП конденсатор 0.1мкФ X7R 10%, 0402, 16В (http://www.chipdip.ru/product/grm155r71c104k.aspx)

Конденсатор С3 и С4: Керамический ЧИП конденсатор 0.01мкФ X7R 10%, 0402, 50В (http://www.chipdip.ru/product/grm155r71h103k.aspx)

Технические параметры SMD чип керамических конденсаторов

1.4 Разработка топологии МСБ

Коммутационную схему МСБ Р402.468759.008 Э4 получают преобразованием заданной принципиальной электрической схемы, в которой все дискретные компоненты, а также электрические соединения по входу - выходу заменяются соответствующими контактными площадками.

Рис.5 Коммутационная схема

Укрупнённые контактные площадки (1х1 мм) являются внешними, все остальные - внутренними (0.5х0.5 мм). Монтаж компонентов производится с помощью пайки. Данная коммутационная схема содержит 4 внешних и 30 внутренних контактных площадок.

Для выбора типоразмера подложки необходимо рассчитать суммарную площадь, занимаемую тонкопленочными резисторами , конденсаторами , и площадь навесных элементов .

Все конденсаторы навесные поэтому .

Находим площадь, занимаемую контактными площадками.

Внешние контактные площадки выполняем размером 1х1 мм. Монтаж навесных компонентов производим с помощью пайки.

Контактные площадки под пайку под транзисторы выполняем размером 0,6х0,3 мм, а под генератор 1,7х1,5 мм. Контактные площадки под навесные резисторы SMD 0603 выполняем размерами 1х0,4 мм, а под навесные SMD конденсаторы 0402 - 0,6х0,3 мм, под навесной SMD конденсатор 1812 - 1х0.3 мм.

Общая площадь всех контактных площадок:

Страницы: 1, 2