скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Программно управляемый частотомер скачать рефераты

p align="left">Сигнал сброса на входе RST не влияет на внутреннее ОЗУ данных. После включения питания содержимое ячеек внутреннего ОЗУ данных принимает случайные значения. Автоматическое формирование сигнала сброса при включении питания может быть достигнуто подсоединением вывода RST к шине питания через конденсатор С12 емкостью 10 мкФ и к общему проводу через резистор сопротивлением 8,2 кОм. При включении питания подобная цепь удерживает высокий уровень на входе RST в течении времени, которое зависит от емкости конденсатора С12 и уровня, до которого он заряжен. Практика показывает, что при включении питающее напряжение достигает своего номинального значения как правило, примерно за 10 мс. При использовании кварцевого резонатора с частотой 24 МГц оно не превышает обычно 1 мс. Следовательно постоянная времени RC_цепи, соединенной с выводом RST, должна превышать указанный временной интервал. При формировании сигнала сброса указанным способом резкое падение напряжения питания вызывает мгновенное понижение напряжение на выводе RST ниже 0. Однако в микро-ЭВМ есть ограничительные диоды, и эти броски напряжения не выводят ее из строя.

С12: К10_9 - 20 В - 10 мкФ ±20%

R6: С2_33и - 0,125 - 8,2 кОм ±5%

Встроенный тактовый генератор микроконтроллера представляет собой обычный инвертор, предназначенный для использовании в качестве элемента с положительным резистивным сопротивлением в цепи обратной связи. Роль реактивного сопротивления играет кварцевый резонатор. Емкость конденсаторов С10, С11 особой роли не играет. При использовании кварцевого резонатора их рекомендуемые номиналы 30 пФ.

С10, С11: К10_9 - 20 В - 30 пФ ±20%

Номинал резистора R7 определяет ток семисегментных индикаторов, т.к. ток протекающий через этот резистор должен быть в 50 раз меньше тока выходных ключей регистра DD4. Номинальный ток индикаторов - 15мА, отсюда следует

(Ом)

Мощность, рассеиваемая на резисторе R7

(мВт)

Номинал резистора R7 выбирается из стандартного ряда

R7: С2_33и - 0,125 - 16 кОм ±5%

Конденсатор С13 - фильтрующий, против помех

С13: К10_9 - 16 В - 50 нФ ±20%

3.2. Расчет потребляемой мощности.

Для того, чтобы можно было обеспечить проектируемый прибор подходящим источником электропитания, необходимо узнать мощность, которую данный прибор будет потреблять при своей работе. Эта мощность складывается из нескольких основных составляющих.

Во-первых, это мощность, которая рассеивается при протекании тока через постоянные резисторы. Это бесполезно расходуемая мощность, которая рассеивается в окружающее пространство и выделяется в виде тепла.

Во-вторых, это мощность, потребляемая как семисегментными индикаторами, так и светоизлучающими диодами. Эта энергия идет на излучение в видимой части электромагнитного спектра и позволяет пользователю измерительного прибора судить о результатах измерения.

В-третьих, это мощность, которая потребляется интегральными микросхемами во время своей работы. Значение этой мощности приведено в соответствующих справочниках, а при отсутствии этих данных ее можно рассчитать исходя из значений потребляемого тока и напряжения питания.

Мощность, рассеиваемая резисторами.

Резисторы R2, R5 образуют делитель напряжения, и через них протекает постоянный ток, определяемый напряжением питания и номиналами этих резисторов

, (8)

где PR - мощность, рассеиваемая резистором, Вт; UR - напряжение на резисторе, В; R - сопротивление резистора, Ом.

Мощность на резисторе R2

(Вт)

Мощность, выделяемая на резисторе R5, также равна 0,23 Вт.

При протекании водных токов операционного усилителя через резисторы R3 и R4, на них также рассеивается определенная мощность.

Видно, что эта мощность практически равна нулю, и ею можно пренебречь.

Постоянный резистор R7 задает токи выходных ключей сдвигового регистра DD4. Мощность, рассеиваемая на нем рассчитывается по формуле (8)

(Вт)

Суммарная мощность, рассеиваемая резисторами, может быть оценена

(Вт)

Далее целесообразно рассмотреть потребляемую мощность интегральных микросхем. Результаты сведены в таблицу.

Полная мощность, потребляемая всеми микросхемами РМ? может быть оценена

, (9)

где PDAx, PDDx - мощность, потребляемая соответствующей аналоговой или цифровой микросхемой. Численные значения

(мВт)=1,625 (Вт)

В общую потребляемую мощность входит также мощность, которая расходуется на индикаторах. Каждый сегмент индикатора потребляет мощность ,

где Iпр - прямой ток через p_n переход, мА; Uпр - падение напряжения на открытом переходе, В. Значение мощности получается в милливаттах.

У каждого семисегментного индикатора АЛС332Г имеется 8 сегментов с Iпр=20 мА и Uпр=2,5 В. Значит один индикатор потребляет 8•20•2,5=400 мВт. На светодиодах VD3, VD4 рассеивается мощность 20 мВт. Суммарная потребляемая мощность всех индикаторов Ринд?

,

где РHGx, PVDx - потребляемая мощность соответствующего семисегментного индикатора и светодиода. Числовое значение

(мВт)

В итоге стали известны все составляющие общей мощности, которая потребляется всем прибором и теперь можно высчитать ее численное значение

(мВт)? 3,8 (Вт)

Максимальная мощность, потребляемая прибором составляет, около 3,8 Вт.

3.3.Алгоритм работы микроконтроллера

Рис.4: «Блок-схема работы микроконтроллера»:

Управление работой всей системы происходит с помощью микроконтроллера. Последовательность действий микро-ЭВМ задает программа, записанная во внутренней памяти контроллера. Общая схема работы микроконтроллера такова.

При включении, срабатывает встроенный алгоритм сброса микросхемы. Значение всех регистров устанавливается в начальное состояние, запрещается обработка прерываний. Затем начинается выполнение зашитой программы по алгоритму, указанному в Приложении 5. Далее по программе происходит инициализация и установление режимов работы обоих счетчиков Т0 и Т1 посредством записи соответствующих значений в биты специальных регистров TMOD и TCON. Также установление необходимого бита в регистре режима прерываний EI разрешает микроконтроллеру выполнять программу обработки прерывания по переполнению счетчика T0. Запрещается индикация установлением на выводе Р1.0 уровня “1”.

На выводе порта Р3.7 устанавливается значение логической единицы, т.е. формируются первые временные ворота. Затем выполняется программа формирования временной задержки длительностью 1 с. Во время этого интервала счетчики производят подсчет импульсов, поступающих на их входы. Содержимое двухбайтовых регистров Т0 и Т1 увеличивается. Если при высокой частоте количество импульсов, пришедших на вход счетчика Т0, превысит емкость регистра, то происходит выполнение обработки прерывания по переполнению и содержимое дополнительного регистра инкрементируется. Это позволяет микроконтроллеру произвести подсчет 224 импульсов. По прошествии одной секунды, на выводе Р3.7 устанавливается “0” и формирование временных ворот заканчивается. Счетчики прекращают счет. В результате получены значения числа импульсов n и N.

Затем микроконтроллер выполняет операцию деления двоичных чисел n и N. Число импульсов n в общем случае трехбайтное, а N - двухбайтное около 10000dec. Так как в микроконтроллере реализована операция деления более чем восьмибитных чисел, то необходимо применять специальный алгоритм, выполняющий деление. В результате получается число, целая часть которого содержится в регистре R3, а дробная - в регистре R4.

Для получения окончательного результат необходимо умножить это число на коэффициент Fсч=10000.

Полученное значение частоты необходимо привести к виду, годному для вывода на индикаторы.

Результат переводится из двоичной формы в двоичнo_десятичную и определяется предел частоты, т.е. как будет выводится результат - в герцах или в килогерцах. Выделяется та часть числа, которая будет выведена на семисегментные индикаторы, необходимо получить четыре значащих цифры. Определяется местоположение запятой. Теперь необходимо перевести число из двоично-десятичного кода в код семисегментного индикатора. Это производится при помощи таблицы соответствия, зашитой в памяти микроконтроллера.

Полученные данные нужно вывести на индикатор.

Производится инициализация последовательного порта ввода_вывода путем записи определенных значений в соответствующие биты специального регистра SCON. Вывод ведется в синхронном режиме последовательным кодом младшими битами вперед. Запись байта в специальный буфер SBUF приемопередатчика приводит к автоматической перезаписи байта в сдвигающий регистр передатчика и инициирует начало передачи байта. В этом режиме информация и передается и принимается через внешний вывод входа приемника RxD. Передается восемь бит данных. Через внешний вывод выхода передатчика TxD вдаются импульсы сдвига, которые сопровождают каждый бит. Частота передачи бита информации равна 1/12 частоты резонатора. Таким образом выводится весь результат, который запоминается в сдвиговом регистре DD4.

На выход порта Р1.0 записывается логический ноль, что разрешает вывод информации на индикаторы. Измерение произведено. При желании, микроконтроллер можно перевести в режим пониженного энергопотребления Power Down.

4. Расчёт надежности

Микросхемы стали основной элементной базой современной РЭА прежде всего благодаря своей высокой надежности. Надежность зависит от многих факторов: совершенства разработки электрической схемы и конструкции, физико-химической совместимости материалов, отработанности и стабильности технологического процесса изготовления, методов контроля качества.

Групповой способ изготовления десятков тысяч микросхем в едином технологическом цикле, в строго контролируемых технологических средах и режимах обеспечивает примерно равную надежность как всех кристаллов в партии микросхем, так и элементов в каждом из кристаллов.

Как известно, одним из основных источников отказов аппаратуры являются межсоединения плат и комплектующих изделий. Внутри микросхемы соединение элементов между собой осуществляется методом осаждения пленок металлов, а соединение элементов с выводами корпуса - методом термокомпрессионной или ультразвуковой микросварки. Эти методы обеспечивают надежное сцепление с поверхностью кристалла и другими пленками и соединение металлов на молекулярном уровне. Число межсоединений на кристалле в тысячи раз превышает число выводов корпуса микросхем. Для большинства типов микросхем характерно низкое потребление мощности. При малой мощности рассеяния рабочая температура кристалла по сравнению с температурой окружающей среды повышается незначительно, поэтому создаются благоприятные условия для замедления физико-химических процессов, приводящих к отказу.

Применение высоконадежных микросхем не всегда автоматически обеспечивает выпуск столь же надежной аппаратуры. Сохранение надежности микросхем в аппаратуре в значительной степени определяется соблюдением рекомендаций по их конструктивно-технологическому применению, режимам и условиям работы.

Реальный уровень надежности микросхем проявляется лишь при эксплуатации аппаратуры. Часто безотказность микросхем различных серий (их изготавливают на разных заводах) практически одинакова в приборах, изготовленных на одном и том же предприятии-изготовителе РЭА. Однако, как показывает статистика, надежность микросхемы одной и той же серии (одного предприятия) оказывается весьма различной в составе комплектов аппаратуры, изготовленных разными заводами. Это следствие различия технологической культуры производства аппаратуры.

Достижение и поддержание максимальной эксплуатационной надежности микросхем (следовательно, и аппаратуры) существенно зависят от проектирования аппаратуры, подготовки производства и наладки оборудования, квалификации персонала, обработанности технологического процесса изготовления аппаратуры, использования средств защиты микросхем от статического электричества, тепловых и других воздействий.

Свойство электронной аппаратуры выполнять возложенные на нее функции, сохраняя свои эксплуатационные показатели в течение заданного промежутка времени в пределах, установленных в техническом задании или технических условиях, называется надежностью.

Надежность аппаратуры обычно связывается с понятиями работоспособности, безотказности, ремонтопригодности и долговечности.

Под работоспособностью понимается состояние, при котором она способна выполнять возложенные функции с параметрами, установленными требованиями технической документации.

Свойство сохранять работоспособность в течение некоторого времени наработки без вынужденных простоев называется безотказностью.

Поскольку большинство типов электронной аппаратуры эксплуатируется длительное время, многократно включаются и выключаются, то возможные случаи нарушения состояния работоспособности сопровождаются ремонтом. Поэтому надежность аппаратуры оценивается так же ремонтопригодностью. Надежность аппаратуры на ряду со свойствами безотказности и ремонтопригодности определяется так же свойством долговечности - сохранением работоспособности в течение срока эксплуатации.

Показателями долговечности являются технический ресурс и срок службы.

В соответствии с расчетной схемой вероятность безотказной работы системы определяется как произведение вероятностей безотказной работы отдельных элементов:

где, n - количество элементов в схеме;

Pi - вероятность безотказной работы i-го элемента схемы.

Для элементов, используемых в разработанном устройстве из справочных данных статистической интенсивности отказов, следующие величины представлены в таблице 7.1.

Таблица 7.1.

Наименование элементов

Кол-во элементов

Интенсивность отказов

Микросхема серии КР531ГГ1

1

Микросхема серии КР142ЕН5А

1

Микросхема серии AD8055

1

Микросхема серии К1533ЛА3

2

Микросхема серии AT89C2051

1

Микросхема серии M5450B7

1

Диоды

4

Резисторы

7

Конденсаторы

13

Резонаторы

2

Паяльные соединения

416

Тогда общая интенсивность отказов:

?общ = (1· 3,6 + 1· 3,8 + 1 · 3,8 + 2 · 3,8 + 1 · 3,4 + 1 · 4,0 +

+4· 0,4 + 7· 0,4 + 13 · 3,0 + 2· 0,4 + 416 ·0,4) · 10=

= 0,9398 · 10

Среднее время наработки на отказ рассчитывается по формуле:

час.

Вероятность безотказной работы прибора рассчитывается по формуле:

,

где, Тk - время контроля (500 ч.).

Вероятность безотказной работы прибора составляет:

Произведенный расчет надежности показала, что проектируемый программно-управляемый частотомер имеет среднее время наработки на отказ 10640,56 часов (по техническому заданию не менее 10000 часов), вероятность безотказной работы 0,95.

5. Требования безопасности

Конструктивное исполнение устройства в соответствии с ГОСТ 12.1.006-87 должно обеспечивать его пожарную безопасность в аварийном режиме и при нарушении правил эксплуатации.

6. Маркировка

Маркировка устройства должна соответствовать комплекту конструкторской документации и ГОСТ 26828-86.

Маркировка клемм подсоединения должна проводиться в соответствии с электрической принципиальной схемой устройства.

Способ и качество маркировки должны обеспечивать четкость и сохранность ее в течение всего срока службы устройства.

Маркировка потребительской тары должна соответствовать требованиям ГОСТ 26828-86

7. Упаковка устройства

Способ упаковывания устройства, паспорта, памятки, комплекты принадлежностей, подготовка их к упаковыванию, потребительская, транспортная тара и материалы, применяемые при упаковывании, порядок размещения и маркировка должны соответствовать комплекту конструкторской документации и ГОСТ 26828-86. ГОСТ 23170-78. ГОСТ 9.014-78.

БИ, БФ, паспорт с памяткой и комплектом принадлежностей, должны быть помещены в пакеты из полиэтиленовой пленки ГОСТ 10354-82. Края пакетов должны быть заварены.

БИ, БФ, паспорт с памяткой и комплектом принадлежностей в полиэтиленовых пакетах должны быть помещены в потребительскую тару - коробку из картона по ГОСТ 12301-81.

На ящик должна быть наклеена этикетка, выполненная согласно конструкторской документации, внутрь каждого ящика должен быть помещен упаковочный лист, содержащий следующие данные:

наименование и обозначение устройства;

количество мест в партии;

номера;

дату упаковывания;

подпись или штамп ответственного за упаковывание.

Транспортная тара внутри должна быть выстлана бумагой битумированной ГОСТ 515-77. Промежутки между потребительской тарой и стенками ящика должна быть заполнены обрезками картона.

Упаковка должна обеспечивать сохранность устройства на весь период транспортирования, а также его хранение в течение установленного срока.

Масса брутто должна быть не более 8 кг.

8. Транспортировка и хранение

В упакованном виде изделие может транспортироваться речным, воздушным, автомобильном железнодорожном видами транспорта.

Транспортирование должно производится в соответствии с требованиями, изложенными в следующих документах: «Правила перевозки грузов», утвержденными Министерством речного флота; «Руководство по грузовым перевозкам на внутренних воздушных линиях», утвержденными Министерством гражданской авиации; «Общие правила перевозки грузов автотранспортом», утвержденными Министерством автомобильного транспорта; «Правила перевозки грузов», утвержденными министерством путей сообщения (МПС).

Транспортирование железнодорожным транспортом должно производиться в крытых вагонах или контейнерах, при этом крепление грузов должно производиться в соответствии с «Техническими условиями погрузки и крепления грузов», утвержденными МПС.

Изделия должны храниться на стеллажах в закрытых вентилируемых помещениях при температуре окружающей среды от +15 °С до +40 °С и относительной влажности до 80 % и отсутствии в окружающей среде агрессивных примесей.

Литература

1. «Дипломное проектирование. Методические указания для студентов специальности Информационно-измерительная техника и технология». МГОУ, 2004 год.

2. Контрольно-измерительная техника. Под ред. Б.И. Горбунова. - М.: Высшая школа, 1987 г.

3. Хромой Б.П., Моисеев Ю.Г. Электрорадиоизмерения: Учебник для техникумов. - М.: Радио и связь, 1985 г.

4. Ермолаев Р.С. Цифровые измерительные приборы. Л., «Энергия», 1981г.

5. Попов В.С. Электрические измерения. Учебник для техникумов. - М.: «Энергия», 1984 г.

Страницы: 1, 2, 3