скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Программно управляемый частотомер скачать рефераты

аксимальное входное напряжение ОУ не должно превышать напряжение питания +5 вольт, а минимальное - быть меньше потенциала земли. Для ограничения подаваемого входного сигнала служат диоды VD1_VD2. Если прикладываемое к диоду напряжение превысит порогового уровня, он открывается и поддерживает это напряжение на постоянном уровне. В качестве диодов выбран импульсный диод КД521Г. Его параметры

Максимальное обратное напряжение - 30 вольт.

Падение напряжения на открытом диоде - 1,0 вольта.

Максимальный прямой ток - 50 мА.

Обратный ток - 1 мкА.

Время восстановления - 4 нс.

Таким образом, прошедшая переменная составляющая входного сигнала ограничена напряжением пробоя (открывания) ограничительных диодов, т. е. не превышает по абсолютной величине 1 вольта. Для ограничения прямого тока через диоды в пределах допустимого служит токоограничивающий резистор R1. С выхода ОУ получаем импульсную последовательность измеряемой частоты и ТТЛ-уровнями.

Эта последовательность поступает затем на вход временного селектора, выполненного на элементе «И_НЕ» микросхемы логики DD1.

При включении микроконтроллера, он инициализирует свои счетчики Т0 и Т1 (соответственно выводы портов Р3.4 и Р3.5) в режиме подсчета внешних импульсов. При перепаде уровня входного сигнала из «1» в «0» содержимое счетчика увеличивается на единицу. Максимальная частота подсчитываемых импульсов равна 1/24 частоты тактовых импульсов контроллера, т. е. 1 МГц. С началом процесса измерения, на выводе линии порта Р3.7 программно формируется высокий логический уровень длительностью 1 с, открываются первые временные ворота. Импульсы с выхода ОУ начинают проходить через селектор 1 (DD2.2) на вход счетчика Т0, и в 16_ти разрядном буфере счетчика TH0+TL0 фиксируется их число.

На элементах DD1.1_DD2.1 выполнена схема формирования вторых временных ворот. Элементы DD1.4 и DD2.1 включены по стандартной схеме RS_триггера с инверсными входами. Импульс длительностью 1 с поступает с контроллера на элемент DD1.2. Первый же импульс измеряемой частоты с операционного усилителя, подаваемый на второй вход DD1.2 изменяет состояние логического элемента, что в свою очередь приводит к смене уровня сигнала на выходе RS_триггера из «0» в «1». Открываются вторые временные ворота. Через селектор 2, выполненный на элементе DD2.3, импульсы эталонной частоты начинают поступать с выхода кварцевого генератора на вход счетчика Т1 микроконтроллера. Количество этих импульсов начинает подсчитываться.

Кварцевый генератор счетных импульсов выполнен на основе интегральной микросхемы генератора импульсов КР531ГГ1. Частота работы микросхем этой серии - не более 50 МГц, напряжение питания +5 вольт, потребляемая мощность - не более 19 мВт. Вместо конденсатора, к входам генератора подключен кварцевый резонатор на 10 кГц, что обеспечивает высокую стабильность временных параметров счетных импульсов.

При смене состояния линии Р3.7 в логический ноль, т. е. по окончании первых временных ворот, импульсы перестают проходить через временной селектор 1, их подсчет прекращается. В микроконтроллере фиксируется количество прошедших импульсов измеряемой частоты - n.

С приходом самого первого импульса после окончания первых временных ворот на вход DD1.3, триггер изменяет свое состояние. Заканчивается формирование вторых временных ворот, и счетчик Т1 микроконтроллера фиксирует число прошедших через временной селектор 2 (DD2.3) импульсов N. Основной измерительный процесс заканчивается и остается только произвести соответствующие вычисления и получить результат в виде конкретного значения частоты. Теперь весь ход работ перекидывается на микроконтроллер.

В результате предыдущего измерительного цикла работы прибора, в памяти контроллера находятся значения прошедших импульсов n и N. Микроконтроллер производит ряд операций над двоичными числами n и N. В результате по формуле (1) вычисляет значение измеренной частоты в двоичном виде. Теперь это значение частоты необходимо перевести в привычный для человека вид и вывести на устройство отображения.

Согласно программе, производятся дальнейшие операции. Полученный результат переводится из двоичного кода в двоично_десятичный код. Определяется предел частоты - герцы или килогерцы и выделяется значащая часть, т. е. четыре старшие цифры. Затем происходит определение места запятой в выводимом результате с учетом предела измерения. Производится преобразование полученного результата в код семисегментного индикатора. После всех операций получается результат в семисегментном коде, который занимает 4 байта (7 байт - цифра и восьмой - запятая) и два дополнительных бита - вывод предела измерения (Гц или кГц).

Для связи микроконтроллера с устройством отображения служит сдвиговый регистр М5450В7 (DD4). Его информационная емкость - 34 двоичных разряда. Ввод данных производится через последовательный интерфейс побитово, причем посылка каждого бита должна сопровождаться импульсом синхронизации, который подается на вход CLK. Частота синхронизирующих импульсов не должна превышать 50 МГц. При подаче каждого бита, предыдущие биты сдвигаются в старшие Номинал резистора R7, который включен между входами +5V и Bright, определяет значение тока, протекающего через выходные контакты. Ток через этот резистор в 50 раз меньше тока выходных ключей сдвигового регистра М5450В7. В микросхеме присутствует инверсный вход разрешения выхода ОЕ, при подаче на него логического нуля введенная информация появляется на выходе регистра.

Передача данных от микроконтроллера к сдвигающему регистру происходит при помощи последовательного интерфейса, который реализован в АТ89с2051 универсальным асинхронным приемопередатчиком. В состав приемопередатчика, называемого часто последовательным портом, входят принимающий и передающий сдвигающий регистры, а также специальный буферный регистр приемопередатчика. Запись байта в буфер приводит к автоматической перезаписи байта в сдвигающий регистр передатчика и инициирует начало передачи байта. Наличие буферного регистра приемника позволяет совмещать операцию чтения принятого ранее байта с приемом очередного. В данной схеме приемопередатчик работает в одном из 4_х возможных режимах. В этом режиме информация передается и принимается через вход приемника (RxD). Принимаются или передаются 8 бит данных (младшим битом вперед). Через выход приемника (TxD) выдаются импульсы сдвига, которые сопровождают каждый бит. Частота передачи бита равна 1/12 частоты кварцевого резонатора, т. е. 2 мегабита в секунду.

Таким образом, полученный результат (34 бит) загружается последовательно по 1 байту в буфер приемопередатчика и передается в сдвиговый регистр. После передачи всей информации на выходе порта Р1.0 микроконтроллера появляется уровень логического нуля и таким образом разрешается индикация результата.

Индикация осуществляется семисегментными индикаторами АЛ316а. Это индикаторы с общим катодом, обдающие достаточно высоким уровнем светоотдачи сегментов, имеющие большие цифры, а также небольшой потребляемый ток.

Высокая точность частотомера обеспечивается стабильностью передаточных характеристик всех звеньев аппаратуры, которые в первую очередь зависят от стабильности питающего напряжения. Для фиксации напряжения питания данного аппаратурного блока применяется интегральный стабилизатор напряжения. В настоящее время для построения радиоэлектронной аппаратуры находят применение универсальные стабилизаторы и стабилизаторы с фиксированным выходным напряжением. Стабилизаторы с фиксированным выходным напряжением (их иногда называют трехвыводными) имеют внутреннюю схему делителя и настраиваются на стандартный ряд питающих напряжений в процессе изготовления микросхемы. В серию К142 входят стабилизаторы с фиксированным рядом выходных напряжений, например К142ЕН5 - на 5 вольт. Входное напряжение подается на вывод 1, а выходное снимается с вывода 3. В схеме имеется защита от перегрузки по выходу. Получена принципиальная схема всего проектируемого устройства и описан принцип ее работы. Теперь необходимо произвести общий расчет всех дискретных элементов присутствующих в схеме, а также произвести выбор их типономиналов.

3.1. Расчет конденсаторов индивидуальной развязки

При проектировании цифровых схем необходимо учитывать импульсные помехи в цепях питания, которые обусловлены, в основном, кратковременным возрастанием токов потребления интегральных микросхем при переключении из одного логического состояния в другое и динамическими токами перезаряда паразитных емкостей сигнальных линий связи. Уменьшение импульсных помех в цепях питания достигается применением индивидуальных конденсаторов развязки. Идея применения конденсаторов развязки для уменьшения импульсных помех заключается во введении для каждой интегральной схемы источника энергии, роль которых выполняют конденсаторы с малой собственной емкостью (как правило, керамические КМ5, К10_9). Эти конденсаторы в промежутках между переключениями микросхем заряжаются до номинального уровня напряжения источника питания, а во время переключения ИС из одного логического состояния в другое разряжается на небольшое значение напряжения, отдавая ток перезаряда переключаемой микросхеме. Другими словами, индивидуальные конденсаторы развязки позволяют локализовать протекание динамических токов потребления в рамках цепи микросхема - индивидуальный конденсатор развязки.

Выбор емкости конденсаторов производится из условия равенства заряда, накопленного конденсатором между переключениями логического элемента, заряду, переносимому за время переключения. При этом напряжение на конденсаторе не должно превышать некоторого наперед заданного значения, равного допустимой помехе по шине питания. Конденсаторы для подавления высокочастотных пульсаций в цепях питания размещают по площади печатной платы равномерно относительно микросхем из расчета один конденсатор емкостью 0,02 мкФ на группу, содержащую не более 10 микросхем. Для микросхем повышенной степени интеграции емкость увеличивают до 0,1 мкФ и устанавливают конденсаторы около каждой микросхемы. Из этих соображений взяты конденсаторы С1_С4 типа К10_9 номинальной емкостью 100 нФ ± 10%. С1_С4: К10_9 - 20 В - 100 нФ ±20%

Выбор конденсаторов групповой развязки по питанию.

Из-за бросков тока в системе питания могут возникать «медленные» колебания напряжения. При правильно спроектированной цепи питания (включение больших электролитических конденсаторов) эти колебания носят затухающий характер. Для снижения низкочастотных пульсаций в шинах питания применяют блокирующие конденсаторы, включаемые между выводами «питание» и «земля» около разъема питания печатной платы. Если же емкость выбрана неправильно. В цепи могут достаточно долго идти колебания. С целью предотвращения таких явлений включают электролитические конденсаторы большой емкости. С7 и С8 - алюминиевые электролитические К53_16, предназначены для подавления помех в цепях постоянного и пульсирующего тока. Их емкость - 10 мкФ.

Расчет элементов входной цепи

Водная цепь устройства должна обеспечивать свободное прохождение переменной составляющей измеряемого сигнала и при этом обеспечивать требуемый режим работы.

Постоянный резистор R1 на входе прибора служит для задания токов, протекающих через ограничивающие диоды VD1 и VD2, т. е. значение номинала этого резистора определяет токи диодов в открытом состоянии. У выбранных диодов КД521Г максимально возможная величина протекающего через них тока в прямом направлении должна составлять не более 20 мА. Тогда максимальный ток через диод

, (6)

где Iпр - ток, протекающий через диод в открытом состоянии, А; Umax - наибольшее значение максимальной величины входного напряжения, В; Uпр - падение напряжения на открытом диоде, В; R1 - необходимое значение номинала ограничительного резистора.

Можно вычислить R1

, (7)

При подстановке соответствующих числовых значений

(Ом)

Значение резистора из стандартного ряда R1=500 Ом. Мощность, рассеиваемая резистором PR1

Численное значение

(Вт)

В качестве R1 берется металлопленочный резистор С2_33и, применение которого допускается на частотах, заданных в техническом задании.

R1: C2-33и - 0,25 - 500 ±5%

Резисторы R5 и R5 образуют простой делитель, напряжение в средней точке которого должно быть равно 2,5 вольт. С одной стороны, для уменьшения потребляемой мощности необходимо, чтобы значение этих резисторов были как можно больше. С другой стороны, ток, протекающий через делитель, должен быть много больше, чем токи через открытые диоды для обеспечения их необходимо величины. Обычно задаются током делителя в 5_10 раз больше тока открытого диода. Пусть ток делителя Iдел=100 мА, тогда

(Ом)

Мощность, рассеиваемая каждым резистором

(Вт)

Резисторы необходимо взять с запасом по мощности, а их номинал - из стандартного ряда.

R2: С2_33и - 0,5 - 27 ±5%

R5: С2_33и - 0,5 - 27 ±5%

Так как источник измеряемого сигнала и операционный усилитель в данном случае являются развязанными по постоянному току, то необходимо предусмотреть заземление входов. Резисторы R3 и R4 служат тем путем, по которому текут входные токи операционного усилителя. Значение их номиналов должно быть таким, чтобы падение напряжения на этих резисторах при протекании входных оков не вызывало ложного срабатывания компаратора. Минимальная чувствительность данного интегрального усилителя составляет Uсм=5 мВ, а входные токи Iвх порядка 1,2 мкА. Значит, для оценки значения резисторов можно воспользоваться формулой

(кОм)

Номиналы обоих резисторов выбираются из стандартного ряда.

R3: С2_33и - 0,125 - 4,2 кОм ± 5%

R4: С2_33и - 0,125 - 4,2 кОм ± 5%

Входные конденсаторы С5 и С6 выбираем такими, чтобы постоянная времени входной цепи (С5+С6)•(R1+R3) была больше половины периода входного сигнала минимальной частоты. Из этих соображений выбираем С5 и С6 равными 150 мкФ.

С5: К53_7- 15В - 150 мкФ ±20%

С6: К53_7- 15В - 150 мкФ ±20%

На неинвертирующем входе операционного усилителя могут наблюдаться броски напряжения, наводиться импульсные помехи, а это, в свою очередь, будет способствовать неустойчивой работе компаратора и может приводить к ложным срабатываниям. Все эти явления носят случайный характер и в сильной степени зависят от условий эксплуатации прибора и близости бытовых и индустриальных помех, но при этом могут оказать довольно сильное влияние на точность измерений и их достоверность. Для устранения влияния этой причины неинвертирующий вход операционного усилителя подсоединяется к земле через конденсатор небольшой емкости С9. Этот конденсатор играет роль источника постоянного напряжения при коротких бросках тока. Номинал емкости этого конденсатора выбирается равным 50 нФ. С9: К10_9 - 16 В - 50 нФ ±20%

Если подача питающего напряжения не сопровождается достоверным сбросом (т.е. удержанием единичного уровня на входе RST в течении 24 периодов колебаний резонатора), то микро_ЭВМ может начать выполнение программы до того, как в регистры специальных функций будут занесены начальные значения. При этом нельзя гарантировать, корректность выполнения программы. Следовательно, микроконтроллер должен иметь цепи, обеспечивающие автоматическое формирование сигнала сброса при включении питания. Инициализация (сброс) микроконтроллера осуществляется сигналом RST (активный высокий уровень напряжения) при условии подачи на микросхему внешнего сигнала синхронизации при подключенном кварце. Вход RST является входом внутреннего триггера Шмидта. Для того, чтобы сброс микросхемы гарантированно произошел, длительность сигнала высокого уровня на входе RST должна быть не меньше двух машинных циклов микро-ЭВМ.

При подаче питания на входе RST DD3 появляется напряжение высокого уровня. По сигналу сброса внутренний алгоритм однокристального микроконтроллера производит следующие действия:

устанавливает счетчик команд PC и все внутренние регистры специальных функций, кроме защелок портов Р0 -- Р3, указателя стека SP и регистра SBUF, в ноль;

указатель стека принимает значение, равное 07Н;

запрещает все источники прерываний, работу таймеров/счетчиков и последовательного порта;

в регистрах специальных функций PCON, IP и IE резервные биты принимают случайные значения, а все остальные биты сбрасываются в ноль;

в регистрах SBUF устанавливаются случайные значения;

устанавливаются фиксаторы _ защелки портов Р0 -- Р3 в «1» РРРРррРРРHHffd.

Страницы: 1, 2, 3