скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Применение контроля информационных слов и их адресов по mod 3 в цифровых устройствах автоматики скачать рефераты

p align="left">Во многих случаях, в частности в ЭВМ, организуется сквозной контроль по модулю. Каждое кодовое слово содержит дополнительные разряды, в которые заблаговременно записывается контрольная характеристика, представляющая собой закодированный остаток по выбранному модулю контроля. В этом случае непосредственно перед выполнением операции не потребуется формировать остатки rа и rь и время выполнения контрольных операций сократится.

Нулевой остаток всегда сравним с самим модулем, т. е.

.

Этот факт можно использовать для повышения эффективности контроля. Если в качестве нулевого остатка всегда выбирать только q, то наличие нуля в контрольных разрядах будет свидетельствовать о возникновении ошибки, что может быть зафиксировано специальным узлом анализа.

Таким образом, в состав контролирующего устройства должны входить специфические узлы, предназначенные для получения контрольных характеристик и выполнения операций над ними.

Узлы свертки, сумматоры и умножители по модулю.

Узлы свертки предназначены для получения остатка от деления числа на модуль контроля q. Эта операция выполняется суммированием цифр разрядов числа по модулю q. Поясним, почему это возможно.

Представим двоичное число в виде:

.

Разделив A на q, получим:

.

Так как для получения остатка все операции в этом выражении выполняются по модулю q, то сомножители 2i/q можно заменить соответствующими остатками ri , которые называются весовыми коэффициентами. Тогда остаток ra можно вычислить по формуле:

.

Следовательно, процесс получения остатка числа по модулю q сводится к суммированию по модулю q содержимого всех разрядов числа с учетом весовых коэффициентов. Значения весовых коэффициентов ri легко определяются делением 2i/q.

Весовые коэффициенты являются периодической функцией номера разряда. Это позволяет упростить операцию свертки, так как она разбивается на ряд однотипных действий. Особенно просто свертка осуществляется при модулях 3, 7, 15, ..., так как значения весовых коэффициентов внутри периода (по группам) совпадают с весами разрядов числа, записанного в двоичной системе счисления.

Существует много разновидностей узлов свертки. Рассмотрим наиболее характерные из них.

Последовательная схема свертки (рис. 1.10) содержит один одноразрядный сумматор и два регистра со сдвигом: РгА -- для хранения свертываемого числа А и Ргrа -- для хранения промежуточных и окончательных результатов.

Рис. 1.10

Операция свертки здесь производится путем последовательного суммирования разрядов числа А с содержимым регистра Ргrа. Перенос, возникающий при суммировании старшего разряда Ргrа, через элемент задержки поступает в младший разряд. Схема проста и требует малого количества оборудования, которое практически не зависит от величины модуля. Недостаток ее состоит в большом времени сворачивания.

Параллельная (пирамидальная) схема свертки, построенная на одноразрядных сумматорах, имеет многоярусную структуру. В каждом ярусе отдельные сумматоры суммируют цифры сворачиваемого числа с одинаковым весом. Достоинством схемы является однотипность ее элементов и малое время выполнения операции сворачивания. Недостаток - большое количество оборудования.

Возможно использование комбинированных схем свертки, когда на параллельный малоразрядный сумматор последовательно подаются группы цифр сворачиваемого числа. По количеству оборудования и времени сворачивания такая схема занимает промежуточное положение между двумя предыдущими.

Сумматор по модулю строится из одноразрядных сумматоров как обычный m-разрядный сумматор, причем он должен иметь цепь циклического переноса из старшего разряда в младший. На рис. 1.11 показана схема сумматора по модулю 3. Здесь же обозначены веса цифр слагаемых и суммы.

Рис. 1.11

Табличные сумматоры непосредственно реализуют таблицу сложения по модулю. В таблице 1 представлены условия работы сумматора по модулю 3, т. е. значения цифр разрядов rс при различных комбинациях цифр rа и rь. Значения rс полагаются равными нулю в том случае, если хотя бы одно из слагаемых rа или rь равно нулю. При этом, как было сказано выше, анализируя rс, можно выявить некоторые ошибки в работе самих схем контроля.

Логика работы табличного сумматора и его структура полностью определяется таблицей 1 (рис. 1.12). Пунктиром обведена схема, выявляющая наличие запрещенной нулевой контрольной характеристики.

Таблица 1

Рис. 1.12

Рассмотрим другой распространенный вариант табличных сумматоров, который получил название матричного. Поясним принцип их построения на примере сумматора по модулю 3 (рис. 1.13).

Рис. 1.13

Числа А и В расшифровываются и переводятся в однопозиционную систему счисления (возбуждение одной шины дешифратора соответствует одному числу). В матрице элементов И срабатывает один из элементов, и сигнал через элемент ИЛИ поступает на шифратор. На выходе шифратора получают число C = (A + B)mod3, закодированное в двоичной системе счисления.

Умножители по модулю служат для получения произведения остатков по модулю. Умножение контрольных характеристик можно выполнить с помощью сумматора путем многократного сложения сдвинутых множимых. Однако в этом случае умножение займет много времени. На практике используются табличные умножители, обеспечивающие при малом количестве оборудования малое время выполнения операции. Эти умножители непосредственно реализуют таблицу умножения по модулю.

Условия работы умножителя по модулю 3 представлены в таблице 2.

Таблица 2

На основании этой таблицы строится схема табличного умножителя (рис. 1.14).

Рис 1.14

Аналогичным образом могут быть построены сумматоры и умножители и по любому другому модулю.

Алгоритмы контроля операций

Рассмотрим принципы построения алгоритмов основных контрольных операций для абсолютных значений чисел, участвующих в операции.

Правильность выполнения сложения и вычитания контролируется соотношениями:

, .

Алгоритм контроля состоит в сложении (вычитании) контрольных характеристик чисел А и В, а затем в сравнении суммы (разности) с суммой чисел по модулю q.

Контрольное соотношение для операции умножения имеет вид:

.

Однако это соотношение справедливо, когда не происходит потери разрядов произведения при их выходе за пределы разрядной сетки. Если эту потерю учесть, то получим:

,

где -- остаток от значения разрядов, отбрасываемых при округлении.

Следовательно, для контроля операции умножения необходимо:

- произвести умножение по модулю q контрольных характеристик rа и rb;

- сформировать из отбрасываемых разрядов Е контрольную характеристику ;

- вычесть по модулю q из произведения величину ;

- сравнить по модулю q полученный результат с величиной .

Для контроля операции деления используются соотношения:

; ,

где А -- делимое; В -- делитель; Z-- частное; W -- остаток от деления А на В, откуда следует контрольное соотношение:

.

Следовательно, контроль операции деления состоит в следующем:

- получить от частного Z и остатка W контрольные характеристики rz и rw;

- произвести умножение rа и rb по модулю q;

- сложить полученное произведение по модулю q с rw;

- сравнить полученную сумму с контрольной характеристикой делимого rа .

В зависимости от количества разрядов, формы представления числа, способа выполнения основной операции над числами приведенные выше алгоритмы могут несколько видоизмениться, однако принципы их построения остаются неизменными.

Рассмотрим принципы построения алгоритма контроля следующих логических операций:

-- поразрядного логического сложения C=A V B;

-- поразрядного логического умножения С=A ^ B;

--поразрядного сложения по модулю 2 .

Используя соотношения:

, ,

после преобразований и перехода к остаткам, можно получить контрольные соотношения:

для операции поразрядного логического сложения

;

для операции поразрядного логического умножения

;

для операции поразрядного сложения по mod 2

.

Здесь , , -- контрольные характеристики результата операции логического сложения (V), логического умножения (^), сложения по модулю 2() соответственно.

Аналогичным образом получаются алгоритмы операций сдвига, инвертирования, пересылок и т. д.

Функциональные схемы контролирующих устройств

Функциональные схемы контролирующих устройств создаются на основе алгоритмов контроля операций.

Покажем, как строятся функциональные схемы устройств для контроля счетчика, множительного и делительного устройств.

Схема контроля счетчика представлена на рис. 1.15. Она имеет в своем составе счетчик по модулю q, узел свертки и узел сравнения. В каждом такте (после поступления одного импульса) или периодически через несколько тактов содержимое основного счетчика сворачивается и величина rсч сравнивается с содержимым контрольного счетчика r'сч . Если , то вырабатывается сигнал ошибки.

Рис. 1.15

Схема для контроля множительного устройства представлена на рис. 1.16. Работа устройства заключается в следующем. Одновременно с поступлением чисел A и B на регистры Рг1 и Рг2 поступают контрольные характеристики ra и rb , которые перемножаются по модулю q, и величина rа * rb mod q пересылается с регистра Рг3 на регистрРг2.

Рис. 1.16

По мере выполнения операции умножения в основном множительном устройстве младшие отбрасываемые цифры произведения через корректор записываются в разряды регистра Pг1. Корректор служит для инвертирования отбрасываемых цифр произведения, а также распределения их в соответствии с весами по разрядам регистра Pгl. Инвертирование позволяет вместо операции вычитания rЕ при получении величины r'с выполнить операцию сложения с величиной . Распределение же отбрасываемых цифр по разрядам Pгl нужно для того, чтобы каждая цифра попала в тот разряд регистра Pгl, который соответствует ее весу. Каждый раз после того, как разряды Pгl будут полностью заполнены, его содержимое суммируется по модулю с записанной на регистре Рг2 величиной rа * rb mod q. Полученная величина через регистр Рг3 вновь записывается на регистр Рг2.

Так по мере выхода отбрасываемых разрядов произведения за пределы разрядной сетки множительного устройства происходит постепенная корректировка величины r'с . После завершения операции умножения на регистре Рг3 будет записана скорректированная величина r'с.

Произведение С=А*В сворачивается и сравнивается с величиной r'с. При их несовпадении выдается сигнал ошибки.

Вариант схемы устройства для контроля работы делительного устройства представлен на рис. 1.17. Работа устройства происходит в следующем порядке. Одновременно с поступлением чисел A и B в делительное устройство на регистры Рг2 и Рг4 поступают их контрольные характеристики ra и rb . После выполнения операции деления частное Z и остаток W последовательно одно за другим сворачиваются и их контрольные характеристики записываются на регистры Рг3 и Рг1 соответственно. Затем с помощью умножителя и сумматора по модулю получают величину , которая поступает на регистр Рг5. После этого на схеме сравнения проверяется выполнение условия ra=r'a . Если условие не выполняется, то вырабатывается сигнал ошибки.

Рис. 1.17

Наиболее широко числовой контроль по модулю применяется в цифровых вычислительных машинах. Здесь для контроля работы арифметических устройств используются так называемые контрольные арифметические устройства. В их состав входит несколько регистров, сумматор и умножитель по модулю, схемы свертки и сравнения, а также ряд вспомогательных узлов (корректоры, счетчики и т. д.). Кроме того, имеется узел местного управления, при помощи которого реализуются соответствующие алгоритмы контроля.

Числовой аппаратурный контроль может производиться не только по одному модулю, а одновременно по нескольким модулям. При этом возникают новые возможности повышения эффективности контроля. В зависимости от величины выбранных модулей можно обеспечить не только определение факта появления ошибки в выходном слове контролируемого устройства, но и определить место (разряд) появления ошибки и ее знак. Следовательно, применение нескольких различных модулей для контроля позволяет в ряде случаев не только обнаруживать, но и автоматически исправлять некоторые ошибки в работе контролируемых устройств.

Так как - периодическая функция номера j разряда, то, используя один модуль, невозможно определить однозначно место ошибки. Однако применение для контроля нескольких модулей позволяет решить эту задачу. Коды, которые строятся на основе нескольких независимых модулей, носят название разделимых арифметических [n, k] кодов.

Существенным недостатком аппаратурного контроля с исправлением ошибок является наличие большого количества контрольной аппаратуры. Поэтому аппаратурный контроль по модулю с исправлением ошибок находит применение только в особо ответственных устройствах и элементах больших систем.

Математические основы контроля носителя информации

Одним из очевидных методов проверки жгутов кодовых проводов и МЭСБ ДЗУ-8 с точки зрения максимальной вероятности обнаружения ошибки является метод сравнения с эталоном. Об этом свидетельствует формула вероятности обнаружения ошибки при использовании любого вида контроля:

,

где - число сочетаний из n no j;

р - вероятность одной ошибки (ошибки кратности 1);

Pj - вероятность появления ошибки j-й кратности;

P(Pnp/Pj)- условная вероятность пропуска ошибки данным методом контроля при условии, что ошибка j-й кратности появляется с вероятностью Pj.

Выражение является вероятностью пропуска ошибки при выбранном методе контроля.

Однако, при контроле методом сравнения с эталоном необходимы исправные и проверенные на достоверность информации жгуты кодовых проводов и МЭСБ ДЗУ-8.

Приемлемым для автомата проверки жгутов кодовых проводов и МЭСБ ДЗУ-8 был признан контроль по mod 3, который не требовал большого объема контрольной аппаратуры и хорошо зарекомендовал себя при разработке и эксплуатации узлов, устройств и приборов ранее. При контроле по mod 3 проверяемый узел, в данном случае - жгут кодовых проводов, контролируется независимой схемой, использующей контрольные символы, являющиеся остатками от деления информационных слов на mod 3 .

Страницы: 1, 2, 3