скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Определение параметров модели биполярного транзистора в программе OrCAD 9.2 скачать рефераты

p align="left"> (47)

где QC - заряд неосновных подвижных носителей, накопленный в нейтральной области коллектора; QJC - заряд неосновных носителей в ООЗ перехода К-Б, связанный с IEC; QBR - заряд неосновных носителей, накопленный в нейтральной области базы; QJE - заряд неосновных носителей в ООЗ Э-Б, связанный с IEC. Если заряд QJC принять равным 0, тогда из уравнения (47) следует

,(48)

где C - время задержки коллектора, BR - обратное время пролета Б, и R - полное обратное время пролета (принят постоянным). СB стремится к нулю.

Два заряда QDE и QDC моделируются двумя нелинейными конденсаторами

(49)

как показано на рисунке 14.

Рисунок 14 - Модель Эберса-Молла для большого сигнала

С ростом приращений на переходах неподвижные заряды QJE и QJC, накопленные в обедненных областях БТ, могут быть смоделированы двумя конденсаторами - называемыми барьерными емкостями. Эти емкости, обозначенные CJE для перехода Б-Э и CJC для коллекторного перехода, включены в модель, как это показано на рисунке 14. Каждая емкость перехода - нелинейная функция от напряжения на выводах перехода, с которым соединена.

В [1] показано, что обе эти зависимости имеют следующий вид:

(50)

где CJ(0) - барьерная емкость при нулевом смещении, V - приложенное напряжение, - контактная разность потенциалов перехода, m - показатель плавности перехода.

Для эмиттерного перехода и коллекторного переходов коэффициенты плавности равны по умолчанию mE = mC = 0,33.

Чтобы получить неподвижные заряды QJE и QJC, необходимо проинтегрировать барьерные емкости по их напряжению, то есть

(51)

На рисунке 15 показаны три кривые зависимости барьерной емкости как функции напряжения [1].

кривая (а) соответствует выражению (50)

кривая (b) показывает конечное изменение барьерной емкости

кривая (с) описывается соотношением (52)

Рисунок 15 - График изменения барьерной емкости с напряжением

Кривая (с) рисунка 15 представляет прямолинейное приближение, сделанное в соответствии с обычными компьютерными программами для V> /2. Уравнение для этой прямой линии, полученной для соответствующего наклона в /2, определяется как

для V /2(52)

В этом приближении удается избежать бесконечной емкости. Но оно не столь точно как кривая Чавла-Гуммеля (b), однако, приемлемо потому, что под прямым смещением диффузионные емкости, доминируют и неотъемлемо включают эффект заряда подвижных носителей в обедненных областях [1].

В Spice используется прямолинейная аппроксимация для CJ подобная линии (с) рисунка 15. Уравнение (52) заменено следующим общим соотношением:

для V 0(53)

Помимо CJE и CJC, при проектировании интегральных схем должна быть принята во внимание еще одна емкость: емкость подложки CJS.

Хотя фактически это барьерная емкость в области с изменяющимся потенциалом эпитаксиальный слой - подложка, здесь она смоделирована как конденсатор с постоянным номиналом.

Это представление адекватно для большинства случаев, так как переход ЭС - подложка смещен в обратном направлении в целях изоляции.

Установив основные соотношения эффектов накопления заряда, покажем, как реализована модель Э-М для большого сигнала в Spice. Компоненты накопленных зарядов QBE = QDE + QJE и QBC = QDC + QJC моделируются конденсаторами CBE и CBC, включенными в эквивалентную схему модели так, как показано на рисунке 16.

Рисунок 16 - Модель большого сигнала Эберса-Молла в Spice2

Компоненты заряда накопления представлены в PSpice следующими зависимыми от напряжения уравнениями емкости [1]:

,(54)

,(55)

,(56)

где для эмиттерного перехода

,(57)

для коллекторного перехода

,(58)

где FC - коэффициент нелинейности барьерных емкостей прямосмещенных переходов, принимающий значения от 0 до 1. Коэффициенты плавности переходов хотя и включены в соотношения (54) - (58), фактически не учитываются в модели Э-М

В PSpice схема модели большого сигнала Г-П идентична схеме, приведенной на рисунке 16. Зависимые от напряжения емкости, определены соотношениями (54) - (58), причем здесь учитываются коэффициенты плавности mE, mC и mS (обычно, они изменяются между 0,33 и 0,5), а IEC и ICC рассматриваются как функции ISS и qB. Кроме того, модель большого сигнала Г-П, учитывает три дополнительных эффекта: распределенная емкость перехода Б-К, модуляция времени переноса заряда F, и распределенные явления в области базы (стадия избытка).

3.2 Параметры модели БТ в динамическом режиме

Для описания модели реального БТ, работающего на большом сигнале, необходимо задать следующие параметры модели [5]:

CJEЕмкость эмиттерного перехода при нулевом смещении (CJE);

CJCЕмкость коллекторного перехода при нулевом смещении (CJC);

CJSЕмкость перехода коллектор - подложка при нулевом смещении (CJS);

VJEКонтактная разность потенциалов перехода Б-Э (E);

VJCКонтактная разность потенциалов перехода Б-К (C);

VJSКонтактная разность потенциалов перехода коллектор - подложка (S);

TFВремя переноса заряда через базу в нормальном режиме (F);

TRВремя переноса заряда через базу в инверсном режиме (R);

FCКоэффициент нелинейности барьерных емкостей прямосмещенных переходов (FC);

MJEКоэффициент плавности эмиттерного перехода (mE);

MJCКоэффициент плавности коллекторного перехода (mC);

MJSКоэффициент плавности перехода коллектор - подложка (mS);

ITFТок, характеризующий зависимость TF от тока коллектора при больших токах (IF);

PTFДополнительный фазовый сдвиг на граничной частоте БТ fТ=1/(2TF) (PtF);

VTFНапряжение, характеризующее зависимость TF от смещения база-коллектор (VF);

XCJCКоэффициент расщепления емкости база-коллектор CJC (XCJC);

XCJC2Коэффициент расщепления емкости база-коллектор CJC (XCJC2);

XTFКоэффициент, определяющий зависимость TF от смещения база-коллектор (XF)

Обозначения, используемые в тексте, обозначаются в круглых скобках.

Коэффициенты плавности перехода в модели Эберса-Молла устанавливаются по умолчанию равными 0,33.

FC - принимает значения от 0 до 1 и используется для вычисления напряжения (FC E и FC C) в области прямого смещения, вне которой, емкость смоделирована линейной экстраполяцией. Это сделано, для того чтобы предотвратить бесконечные емкости при V = Е и при V = С, и следовательно, гарантировать непрерывную функцию для емкостей и производных. По умолчанию FC установлена в PSpice равной 0,5.

Емкость перехода К-Б разделена на две составляющие: одна из них относится к активной части коллекторного перехода (емкость XCJCCJC включена между внутренним выводом базы и коллектором), другая к пассивной части коллектора (CJC(1 - XCJC) - емкость от внешней базы до коллектора). В качестве параметра в модели задается величина XCJC, которая равна отношению барьерной емкости активной части перехода К-Б к полной барьерной емкости. XCJC изменяется между 0 и 1, а по умолчанию задается равным 1, то есть емкость пассивной части вообще не учитывается. При задании параметра XCJC необходимо учитывать, что он определяется не только геометрическими размерами активной и пассивной частей перехода, но и различием удельных барьерных емкостей донной и боковой частей перехода [2].Этот параметр обычно важен только на СВЧ.

Компоненты накопленного заряда представлены в PSpice следующими уравнениями емкости зависимыми от напряжения:

,(59)

где F1, F2, и F3 определяются выражением (58).

На рисунке 17 изображена полная модель БТ на большом сигнале с дополнением эффекта распределенной емкости перехода Б-К.

Рисунок 17 - Модель большого сигнала Г-П в PSpice [1]

Диффузионная емкость пропорциональна среднему времени пролета F носителей заряда через базу в прямом направлении и дифференциальной проводимости .

Параметр F учитывает зависимость времени пролета от уровня инжекции и от напряжений на переходах, то есть учитываются эффекты модуляции ширины базы. В модели принята следующая аппроксимация режимных зависимостей F [2]:

,(60)

где x = .

В этом выражении сомножитель 3x2-2x3 при ITF>0 отражает рост F при повышении уровня инжекции, что характерно для эффектов Кирка. Впрочем, по умолчанию ITF = 0 и, следовательно, этот эффект не описывается. Экспоненциальный сомножитель описывает спад F с ростом запирающего напряжения на коллекторном переходе, что связано с эффектом Эрли. Но по умолчанию VTF = , и этот эффект не учитывается. Кроме того, XTF = 0, и если не задать XTF > 0, то никакие режимные зависимости F не учитываются. В этом случае F = TF, где TF - параметр модели [2].

Таким образом, прямой и обратный переносимый заряд можно смоделировать заданием параметров F, XF, VF , IF и R.

3.3 Методы экстракции динамических параметров модели БТ из результатов измерения динамических характеристик и параметров

Характер изменения F от IC показан на рисунке 18. Изменение F при больших токах К обычно определяется эмпирическим уравнением, полученным из произведения полосы усиления fT и тока IC, при различных напряжениях К-Э VCE.

Рисунок 18 - График зависимость F от lnIC

В области средних токов, fT находиться по его пиковому значению и почти постоянно; при этом время переноса заряда - время, необходимое н.з. для того, чтобы пересечь область базы и ООЗ коллекторного перехода. Диффузионная емкость перехода Э-Б увеличивается с током, уменьшая рост дифференциальной проводимости, имеющий результатом определенный предел для fT. Таким образом, идеальный максимум F определяется из выражения [1]:

(61)

На больших токах, fT и к тому же F становятся функцией IC и VCE и перестают быть постоянными (см. рисунок 18). Физические эффекты типа эффекта Кирка увеличивают время переноса и уменьшают fT. Эти эффекты смоделированы следующей эмпирической функцией [1]:

(62)

F умножают на ATF в уравнениях заряда. Постоянная 1,44 просто дает интерпретацию VF как значение VBC, где экспонента равняется 1/2. XF управляет полным спадом из-за fT ; VF преобладает над изменением по fT относительно VCE; IF доминирует над изменением по fT относительно тока.

Как видно из рисунка 18, IF может быть получен путем экстраполяции прямой до пересечения с осью lnIC.

Можно показать [1], что

(63)

В области слабых токов или высоких VCE (АТF = 1), выражение (63) сокращается до

(64)

При больших IC, таких, что ICC/(ICC + IF) 1 и средних VCE , формула (63) сократиться до

(65)

Таким образом, асимптота сильных токов для данных VBC определена параметрами XF и VF. Аналогично, асимптотическая зависимость выражения (63) в экстремумах от VBC будет

, для IC, VBC0(66)

когда ATF 1+XF , при IC , VBC 0(67)

Таким образом, максимально возможный спад в fT управляется параметром XF. В PSpice, этот эффект выражен следующим выражением для заряда и эквивалентной емкости:

, (68)

,

где FF - модулированное время переноса заряда через базу, данное выражением:

,(69)

и F - идеальное время переноса заряда в активном режиме. F экстраполируется на ось y зависимости FF от lnIC.

4. Зависимость параметров модели БТ от температуры и площади

Температурные зависимости параметров элементов эквивалентной схемы БТ устанавливается с помощью следующих выражений [1].

Здесь могут устанавливаться несколько температурных уравнений для РSpice параметров модели БТ, которые можно выбрать, установив параметры TLEV и TLEVC в опции .MODEL. В последующем, мы будем рассматривать только уравнения, выбранные с TLEV.

Температурная зависимость ширины ЗЗ Еg (ЕG) следует из выражения

Температурная зависимость F (BF) определяются уравнением

Температурная зависимость IS (IS) моделируется формулой

IBЕ (IBE) и IBC (IBC) определены

Температурная зависимость ISSUB (ISS) определена как

Зависимости параметров IKF (IKF), IKR (IKR) и IrB (IRB) от температуры представлены следующим образом:

где ТIKF1, ТIKR1, TIRB1 и TIKF2, TIKR2, TIRB2 температурные коэффициенты первого и второго порядка для соответствующих параметров, соответственно.

Следующие параметры определены для случая, когда соответствующие температурные коэффициенты определяются независимо от значения TLEV

Наконец, сопротивления, как функция температуры независимо от значения TLEV, определены следующим образом []:

В вышеупомянутых уравнениях, коэффициенты, заканчивающиеся на 1 - температурные коэффициенты первого порядка, заканчивающиеся на 2 - температурные коэффициенты второго порядка для соответствующего параметра.

Скалярный коэффициент AREA позволяет учесть параллельное соединение однотипных транзисторов, для чего в приведенной выше модели БТ изменяются следующие параметры [5]. На параметр AREA необходимо умножить все токи, емкости и заряды, а все сопротивления поделить на AREA. AREAВ и AREAC масштабный размер области базы и области коллектора. AREAВ или AREAC используются для вычисления, и выбирается в зависимости от вертикальной или горизонтальной геометрии (задание параметра модели SUBS). Для вертикальной геометрии AREAВ - масштабный коэффициент (коэффициент пересчета) для IBC, ISC и CJC. Для горизонтальной геометрии масштабный коэффициент AREAC.

Значение AREA указывается в задании на моделирование при включении транзистора в схему, по умолчанию AREA = 1.

Заключение

В результате проведенной работы изучена PSpice модель БТ и параметры для ее описания. В данном проекте были получены основные соотношения для расчета некоторых параметров модели транзистора, зависимости этих параметров от температуры и конструкции, рассмотрены методы экстракции параметров модели из экспериментальных характеристик.

Анализ PSpice модели БТ показал, что наряду с достоинствами этой модели есть и существенные недостатки. В целом модель биполярного транзистора в PSpice может с высокой точностью и в широком диапазоне напряжений, токов и частот описывать характеристики реальных приборов. Но для этого параметры модели должны быть тщательно идентифицированы по достоверным экспериментальным данным. Для идентификации может использоваться входящая в OrCAD 9.2 программа Model Editor. А получение достоверных исходных данных, особенно на высоких частотах, требует применения очень точной измерительной аппаратуры. Поэтому рядовой пользователь обычно не может квалифицированно идентифицировать параметры модели. А использование значений параметров по умолчанию, как было показано выше, не может обеспечить приемлемой точности расчетов.

Автоматическое проектирование ИС распространяется все шире и становится практически единственным инструментом в этой области. Поэтому знание основ модели необходимо для проектировщиков любого уровня.

Список использованных источников

1 Massobrio G., Antognetti P. Semiconductor Device Modeling with SPICE. Second Edition. McGraw-Hill, Inc. 1988. - 479 p.

2 Архангельский А.Я. PSpice и Design Center. В 2-х ч. Часть 1. Схемотехническое моделирование. Модели элементов. Макромоделирование. Учебное пособие. - М.: МИФИ, 1996. - 236 с.

3 Маллер Р., Кейминс Т. Элементы интегральных схем: Пер. с англ. - М.: Мир, 1989. - 630 с., ил.

4 Носов Ю.Р. и др. Математические модели элементов интегральной электроники. - М.: Сов. Радио. 1976. - 304 с.

5 Разевиг В.Д. Система сквозного проектирования электронных устройств Design Lab 8.0. - М.: Солон 1999. - 698 с.

Приложение А

Таблица А - Параметры модели биполярного транзистора

Обозначение

параметра

Параметр

Разме-рность

Значение по умолчанию

AF

Показатель степени, определяющий зависимость спектральной плотности фликкер-шума от тока через переход

1

BF

Максимальный коэффициент передачи тока в нормальном режиме в схеме с ОЭ (без учета токов утечки)

100

BR

Максимальный коэффициент передачи тока в инверсном режиме в схеме с ОЭ

1

CJC

Емкость коллекторного перехода при нулевом смещении

Ф

0

CJE

Емкость эмиттерного перехода при нулевом смещении

пФ

0

CJS (CCS)

Емкость коллектор-подложка при нулевом смещении

Ф

0

EG

Ширина запрещенной зоны

эВ

1,11

FC

Коэффициент нелинейности барьерных емкостей прямосмещенных переходов

0,5

GAMMA

Коэффициент легирования эпитаксиальной области

10-11

IKF (IK)*

Ток начала спада зависимости BF от тока коллектора в нормальном режиме

А

?

IKR*

Ток начала спада зависимости BR от тока эмиттера в инверсном режиме

А

?

IRB*

Ток базы, при котором сопротивление базы уменьшается на 50% полного перепада между RB и RBM

А

?

IS

Ток насыщения при температуре 27°С

А

10-16

ISC (C4)*

Ток насыщения утечки перехода база-коллектор

А

0

ISE (C2)*

Ток насыщения утечки перехода база-эмиттер

А

0

ISS

Обратный ток p-n-перехода подложки

А

0

ITF

Ток, характеризующий зависимость TF от тока коллектора при больших токах

А

0

KF

Коэффициент, определяющий спектральную плотность фликкер-шума

0

MJC (МС)

Коэффициент, учитывающий плавность коллекторного перехода

0,33

MJE (ME)

Коэффициент, учитывающий плавность эмиттерного перехода

0,33

MJS (MS)

Коэффициент, учитывающий плавность перехода коллектор-подложка

0

NC*

Коэффициент неидеальности коллекторного перехода

1,5

NE*

Коэффициент неидеальности перехода база-эмиттер

1,5

NF

Коэффициент не идеальности в нормальном режиме

1

NK

Коэффициент, определяющий множитель Qb

0,5

NR

Коэффициент неидеальности в инверсном режиме

1

NS

Коэффициент неидеальности перехода подложки

1

PTF

Дополнительный фазовый сдвиг на граничной частоте транзистора fГР=1/(2Рtf)

градус

0

QCO

Множитель, определяющий заряд в эпитаксиальной области

Кл

0

RB

Объемное сопротивление базы (максимальное) при нулевом смещении перехода база-эмиттер

Ом

0

RBM*

Минимальное сопротивление базы при больших токах

Ом

RB

RC

Объемное сопротивление коллектора

Ом

0

RCO

Сопротивление эпитаксиальной области

Ом

0

RE

Объемное сопротивление эмиттера

Ом

0

TF

Время переноса заряда через базу в нормальном режиме

с

0

TR

Время переноса заряда через базу в инверсном режиме

с

0

TRB1

Линейный температурный коэффициент RB

0C-1

0

TRB2

Квадратичный температурный коэффициент RB

0C-2

0

TRC1

Линейный температурный коэффициент RC

0C-1

0

TRC2

Квадратичный температурный коэффициент RC

0C-2

0

TRE1

Линейный температурный коэффициент RE

0C-1

0

TRE2

Квадратичный температурный коэффициент RE

0C-2

0

TRM1

Линейный температурный коэффициент RBM

0C-1

0

TRM2

Квадратичный температурный коэффициент RBM

0C-2

0

T_ABS

Абсолютная температура

0C

T_MEASURED

Температура измерений

0C

T_REL_GLOBAL

Относительная температура

0C

T_REL_LOCAL

Разность между температурой транзистора и модели-прототипа

0C

VAF (VA)*

Напряжение Эрли в нормальном режиме

В

?

VAR (VB)*

Напряжение Эрли в инверсном режиме

В

?

VJC (PC)

Контактная разность потенциалов перехода база-коллектор

В

0,75

VJE (PE)

Контактная разность потенциалов перехода база-эмиттер

В

0,75

VJS (PS)

Контактная разность потенциалов перехода коллектор-подложка

В

0,75

VO

Напряжение, определяющее перегиб зависимости тока эпитаксиальной области

В

10

VTF

Напряжение, характеризующее зависимость TF от смещения база-коллектор

В

?

XCJC

Коэффициент расщепления емкости база-коллектор CJC

1

XCJC2

Коэффициент расщепления емкости база-коллектор CJC

1

ХТВ

Температурный коэффициент BF и BR

0

XTF

Коэффициент, определяющий зависимость TF от смещения база-коллектор

0

ХТI (РТ)

Температурный коэффициент IS

3

* Только для модели Гуммеля-Пуна

Страницы: 1, 2, 3