скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Модернизация блока управления аппарата искусственной вентиляции легких "Спирон–201" скачать рефераты

абота аппарата в режиме СДПД

В режиме СДПД схема работает так же, как в фазе СДПД в режиме СППВ. Возможно одновременное проведение распыления лекарственных средств, которое производится в этом режиме непрерывно.

Работа аппарата в режиме САМД

При самостоятельном дыхании САДМ генератор вдоха 2 не работает, ЭМК 3.4, 3,7, 3.10 открыты. Пациент вдыхает свежую смесь из мешка 1.5 блока подачи кислорода 1 через самодействующие клапаны 3.17, 3.6 и ЭМК 3.7. Коммутация пациента с линиями вдоха и выдоха в соответствующих фазах дыхательного цикла происходит с помощью самодействующих клапанов 3.6 и 3.9.

При ИВЛ вручную (ВР) (мешком 17) клапан 3.17 обеспечивает заполнение мешка свежей смесью из блока подачи кислорода 1 при его расправлении и предотврашает обратный сброс смеси в блок подачи кислорода 1 при сжатии мешка. Клапан УДВ 3.12 управляется пневматически от мешка 17 и обеспечивает перекрытие линии выдоха при сжатии мешка 17, то есть во время вдоха, и сообщение легких пациента с атмосферой при расправлении мешка 17 во время выдоха. ЭР 3.13 сообщает камеру управление клапана УДВ 3.12 с мешком 17 через бактериальный фильтр 3.16, что предотвращает инфицирование ЭР 3.13.

Описание структурной схемы (рис. 1.2.3) системы управления

Все функции управления аппаратом осуществляет ОМК. Сопроцессор ОМК обеспечивает постоянное сканирование клавиатуры и через основной процессор производит настройку на режимы, задаваемые оператором. Типы режимов, задаваемые параметры и информация о давлении в дыхательном контуре отображаются на двух газоразрядных индикаторах также через сопроцессор ОМК. На один из индикаторов выводятся цифровые значения, задаваемые или вычисленные, на другой - в виде столбиков переменной длины выводится текущее давление в дыхательном контуре и его различные установки. Для быстрой визуализации изменяющегося давления основной процессор ОМК через БИС параллельного ввода / вывода с частотой порядка 100 Гц запускает АЦП, считывает и обрабатывает результаты замера и передает информацию сопроцессору. Через эту же БИС осуществляется управление ЭМК и ЩД 6 в блоке пациента. Системное время ОМК (порядка 10 м с) задается таймером через один из входов контролера прерываний. Другой вход внешнего прерывания используется для дистанционного управления ЭМК вдоха и выдоха вручную. Микроконтроллер (рис. 4) (ОМК) представляет собой плату, на которой размещены два микропроцессора: основной типа КР5800ВМ30Л и сопроцессор типа КР1816ВЕ35 и ряд других БИС. Основной процессор обеспечивает основные функции вычисления и управления, а сопроцессор - обслуживание дисплея и клавиатуры. Память основного процессора составляет 16 кбайт, а сопроцессора - 2 кбайта, основной процессор дополнен двумя БИС параллельного ввода / вывода (частично одно из них используется для связи двух процессоров), БИС последовательного интерфейса контроллера прерываний, двумя программируемыми таймерами, а также оперативной памятью 2 кбайта и схемами интерфейсов системной шины И 4.1. Сопроцессор дополнен экспандером параллельного интерфейса.

1.3 Медико-биологические аспекты

1.3.1 Влияние ИВЛ на некоторые функции организма

Искусственной вентиляцией легких называют обеспечение газообмена между окружающим воздухом (или специально подобранной смесью газов) и альвеолярным пространством легких искусственным способом.

Основным и, пожалуй, единственным методом ИВЛ в настоящее время является метод вдувания газа в дыхательные пути. При этом либо в последние вводится определенный объем газовой смеси, либо она вдувается в легкие в течение определенного времени с заданной скоростью, либо подается до тех пор, пока давление в системе больной - респиратор не повысится до определенного уровня. В любом случае ИВЛ заменяет (протезирует) естественный акт внешнего дыхания путем создания положительного давления в начале дыхательных путей.

В комплексе интенсивной терапии основными задачами ИВЛ являются обеспечение адекватного газообмена в легких и освобождение больного от работы дыхания. Ликвидируя гипоксемию, а иногда и гиперкапнию, искусственное дыхание предотвращает развитие в органах необратимых изменений. Вторая задача не менее важна, чем первая, хотя не всегда учитывается в клинической практике. При ряде патологических процессов, особенно при нарушении проходимости дыхательных путей, резко возрастает «энергетическая цена» дыхания. Здоровый организм расходует на работу дыхательных мышц 1 -3% потребляемого кислорода. Включение ряда компенсаторных механизмов может увеличивать этот расход до 35 -50% от Vо2 [Долина О.А., 1975; Bjork V. О. et al» 1964; Marini J.J. et al., 1985]. ИВЛ, снимая нагрузку с дыхательной мускулатуры, освобождает больного от непосильной для него в данный момент работы и способствует перераспределению кислорода в организме, улучшает оксигенацию жизненно важных органов [Неговский В.А., 1971].

Однако наряду с несомненным благоприятным влиянием на жизнедеятельность организма ИВЛ может оказать побочное отрицательное действие. Начиная с конца 40-х годов изучению этих вредных эффектов посвящаются многочисленные исследования. Все же многие вопросы остаются спорными и не до конца решенными.

1.3.2 Влияние ИВЛ на гемодинамику

Лучше всего изучены гемодинамические эффекты ИВЛ. Известно, что внутригрудная гемодинамика во многом зависит от дыхательного цикла. При спонтанном дыхании во время вдоха давление в плевральных полостях снижается до -10 см вод. ст. При этом происходит «присасывание» крови к правому предсердию из полых вен, а также снижается давление в легочных капиллярах, что облегчает приток крови в систему малого круга кровообращения (рис. 1.3.1, а). В норме кровоток в легком во время выдоха составляет 6%, а во время вдоха - 9% от объема циркулирующей крови [Watrous W.G. et al., 1950]. В результате во время вдоха увеличивается систолический выброс (ударный объем) сердца (УОС).

При ИВЛ во время вдувания газовой смеси в трахею внутрилегочное давление повышается до 15 -20 см вод. ст. (иногда выше), а внутриплевральное до 5 -10 см вод. ст. Это приводит к уменьшению притока крови к правому предсердию (рис. 1.3.1, б). Раздуваемые изнутри альвеолы передавливают легочные капилляры, повышается давление в артериях малого круга кровообращения и ухудшается приток крови к легким из правого желудочка. Вследствие этого во время искусственного вдоха снижается УОС [Дворецкий Д.П. и др., 1984, и др.].

Рис. 1.3.1 Давление в дыхательных путях, альвеолах и плевральных полостях во время спонтанного (а) и искусственного (б) вдоха.

Компенсация снижения венозного притока к сердцу осуществляется за счет повышения периферического венозного давления, что приводит к уменьшению физиологического градиента давлений между артериолами и венулами [Astrup P., Neykirch A., 1959]. В результате в паренхиматозных органах может наступить уравновешивание этих давлений, ведущее к капиллягжому стазу и снижению продукции альбуминов в печени. Это в свою очередь вызывает падение онкотического давления плазмы, выход жидкости из капилляров в ткани, сгущение и увеличение вязкости крови, отечность тканей и азотемию.

Многими авторами показано, что отрицательное влияние ИВЛ на внутригрудную гемодинамику зависит от объема циркулирующей крови. При гиповолемии оно проявляется намного сильнее. Большое значение имеет также максимальное и среднее давление в трахее, создающееся при искусственном дыхании. С. A. Hubay (1955), J. С, Рагker и соавт. (1984) в эксперименте показали, что при максимальном давлении 50 см вод. ст. и среднем давлении 6,5 мм вод. ст. блокируется легочное кровообращение и резко повышается проницаемость капиллярной стенки.

Средним давлением называют отношение интегралов кривой давления вдоха и кривой давления выдоха в пределах дыхательного цикла. Среднее давление может быть определено и без графической регистрации - по показаниям сильно демпфированного манометра.

Общепринятым является мнение, что уменьшение вредного влияния ИВЛ на гемодинамику может быть достигнуто путем снижения среднего давления, для чего предложен ряд методов. В первую очередь это укорочение, фазы вдоха [Максимов Б.П., 1978; Berneus В., Carlston A., 1955, и др.]. Рекомендуется проводить ИВЛ при соотношении вдох: выдох не более 1: 1,5. Другим методом является активный выдох [Maloney J.V., Handford S.W., 1954, и др,]. Считается, что включение субатмосферного давления увеличивает венозный возврат к сердцу на 33% (а при сниженном объеме циркулирующей крови - на 100%), уменьшает отек мозга при его травмах и заболеваниях. По мнению ряда авторов, активный выдох особенно необходим у больных с гиповолемией и сердечной недостаточностью, у детей и при хронических заболеваниях легких, сопровождающихся снижением бронхиальной проходимости. В противовес этим представлениям многие исследователи показали, что отрицательное давление во время выдоха не улучшает гемодинамику и отрицательно сказывается на газообмене в легких и их механических свойствах.

С целью снижения среднего давления С.Т. Gray (I960) предложил проводить ИВЛ малыми дыхательными объемами, но с большей частотой (40-60 циклов в минуту). Этот метод нашел сторонников [Малышев В.Д., 1967, и др.], но в настоящее, время применяется крайне редко. В.С. Гигаури (1966) и Т.М. Дарбиняном (1966) предложен метод асинхронного дыхания, т.е. попеременного вдувания воздуха в левое и правое легкое для снижения среднего давления. Указанный метод не нашел распространения, хотя отечественной промышленностью некоторое время выпускался специально предназначенный для этой цели респиратор.

Остановимся на принципиальном отношении к вопросу о влиянии ИВЛ на гемодинамику. Хотя, как сказано выше, практически все авторы находили ту или иную, степень вредного воздействия искусственного дыхания на внутри грудное кровообращение, заметим, что подавляющее большинство исследовании сделано в эксперименте или во время общей анестезии у больных с нормальными легкими. С другой стороны, многолетний клинический опыт показывает, что на практике вредное влияние ИВЛ можно обнаружить и крайне редко. Более того, применение ИВЛ в режиме ПДКВ, при котором внутрилегочное давление повышается до значительного уровня, у большинства больных с острой дыхательной недостаточностью приводит не к снижению, а к увеличению сердечного выброса.

По нашим наблюдениям, даже очень высокое давление в трахее (60-70 см вод. ст.) во время искусственного вдоха у больных со сниженной бронхиальной проходимостью не оказывало сколько-нибудь заметного влияния на, гемодинамику [Кассиль В.Л., 1974, и др.]. Как было показано ранее [Кассиль В.Л., Рябова Н.М., 1977], при высоком сопротивлении дыхательных путей градиент давлений между трахеей и альвеолами (рис. 5) значительно увеличивается. Причина этого явления - увеличение постоянной времени (ф), которая равна произведению растяжимости легких на сопротивление дыхательных путей (С * R). Примерно 95% от давления, создаваемого в трахее, передается в альвеолы за время, равное Зф [Nor-lander О. R., 1964, и др.]. При увеличении постоянной времени за счет возрастания R выравнивание давления между трахеей и альвеолами происходит гораздо медленней, чем у здорового человека.

Пример. Если С = 0,25 л/см вод. ст., а R = 5 см вод. ст./ (л * с-1), то ф = 0,25 * 5 = 1,25 с. При частоте дыхания 18 в минуту и соотношении вдох: выдох 1:2 продолжительностью вдоха (Твд) равна 1,1 с. Тогда в конце фазы вдоха давление в альвеолах:

Ра= (95%?Твд (с)) /Зф (с) = (95?1,1) /3,75 = 27,9% от давления, созданного в конце вдоха в трахее.

Если же R возрастает вдвое, то постоянная времени соответственно увеличивается до 2,5 с. Тогда при тех же условиях:

Р А1 = (95?1,1) /7,5=13,9% от давления, созданного в трахее.

В этих условиях даже существенное повышение трахеального давления не сопровождается выраженным нарастанием давления в альвеолах. Этим можно объяснить крайне редкое проявление вредного влияния ИВЛ на кровообращение при острой дыхательной недостаточности, которая почти всегда сопровождается нарушением бронхиальной проходимости.

В связи с изложенным широко распространенное в литературе мнение относительно существенного вредного воздействия повышенного трахеального давления при ИВЛ на гемодинамику представляется нам обоснованным главным образом для анестезиологической практики, где у большинства больных нет выраженных острых изменений в легких. При интенсивной терапии тяжелобольных со значительными изменениями механических свойств легких эти опасения, на наш взгляд, во многом преувеличены. По нашему мнению, стремление к обязательному снижению среднего давления в течение дыхательного цикла, которое считается более физиологичным, далеко не всегда целесообразно. Исключение составляют больные с выраженной гиповолемией.

1.3.3 Влияние ИВЛ на функции легких

Многими авторами показано, что при ИВЛ появляется несоответствие между распределением воздуха и кровотока в легких [Зильбер А.П., 1971, 1978; Дворецкий Д.П., 1984; Rehder К. et al., 1972, и др.]. В результате этого увеличивается физиологическое мертвое пространство и шунтирование крови справа налево, повышается альвеолоартериальный градиент по кислороду. Нарушения вентиляционно-перфузионных отношений усиливаются с увеличением скорости газового потока (более 0,4 л/с) и частоты дыхания. Монотонный дыхательный объем способствует поступлению воздуха в одни и те же наиболее растяжимые участки легких. Возрастает опасность баротравмы альвеол. В менее растяжимых, участках отмечается склонность к ателектазированию.

По-видимому, ИВЛ значительно изменяет нормальное движение воздуха в легких. Согласно математической модели Шика-Сидоренко (рис. 1.3.3, а), при спокойном вдохе конвекционное движение воздуха по дыхательным путям замедляется по мере разветвления бронхиального дерева и на уровне кондуктивной зоны прекращается. В бронхиолах и альвеолах перемешивание воздуха осуществляется только за счет диффузии газов - броуновского движения молекул. В связи с большей скоростью газового потока при ИВЛ должны происходить смещение зоны конвекционного движения в сторону альвеол и уменьшение зоны диффузионного газообмена (рис. 1.3.3, б). Кроме того, при самостоятельном дыхании в большей степени вентилируются периферические участки легких, которые прилегают к движущейся диафрагме и грудной стенке. При ИВЛ, наоборот, наибольшая вентиляция происходит в перибронхиальных и медиастинальных участках, где в первую очередь создается положительное давление во время искусственного вдоха.

Рис. 1.3.3

С конца 40-х годов в литературе дискутируется вопрос: влияет ли на газообмен и гемодинамику форма кривых давления и газового потока? В 1947 г. A. Cournand и соавт. предложили свою «идеальную кривую давления», a J. Stoffregen (1956) - «улучшенную идеальную кривую

Для обеих характерно быстрое снижение давления в дыхательных путях после конца вдоха. А.С. Сметнев и В.М. Юревич (1984) также считают, что выдох должен начинаться немедленно после конца вдоха и положительное давление в легкие необходимо поддерживать только во время введения в легкие требуемого дыхательного объема. Считается, что это уменьшает вредное влияние ИВЛ на гемодинамику.

С. G. Engstrom и О.Р. Norlander (1962) теоретически обосновали другую форму кривой, на которой имеется плато - статическая фаза после окончания вдоха и перед началом выдоха. По их мнению, такая инспираторная пауза способствует наилучшему распределению воздуха внутри легких.

Ряд авторов считают, что вентиляционно-перфузионные отношения в легких улучшаются, если скорость газового потока нарастает к концу вдоха [Гейронимус Т.В., 1975; Максимов Б.П., 1978; Engstrom С. G., 1963; Johansson N., 1975, и др.]. С другой стороны имеются данные, говорящие в пользу постоянной [Гальперин Ю.С., 1972; Burchardi H., 1974] или даже снижающейся [Baker A.A. et al., 1977; Brychta О. et al., 1980; Danzmann E. et al., 1980; Al-Saady N., Bennett E., 1985; Felton C.R. et al., 1984] скорости потока во время вдоха. Наконец, имеются серьезные сомнения в том, что форма кривых давления и скорости в дыхательных путях оказывает существенное влияние на газообмен в легких [Кассиль В.Л., 1981; Fuleihan S.F. et al., 1976, и др.].

Существуют также разногласия по вопросу о воздействии различных соотношений времени вдоха и выдоха на распределение воздуха в легких и отношение мертвого пространства к дыхательному объему.

Большинство исследователей считают, что ИВЛ значительно ухудшает механические свойства легких: их эластическое и аэродинамическое сопротивление вдоху возрастает. Увеличению последнего способствует турбулентность газового потока при ИВЛ. Что касается снижения растяжимости легких, то механизм его не совсем ясен, так как показано, что оно наступает буквально через несколько минут после начала ИВЛ [Mundeleer P., 1978].

Страницы: 1, 2, 3, 4, 5, 6