скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Квадратурная амплитудная модуляция скачать рефераты

.32

Это дуплексный протокол с эхо-подавлением и квадратурной амплитудной модуляцией или модуляцией с решетчатым кодированием. Частота несущего сигнала - 1800 Гц, модуляционная скорость - 2400 бод. Таким образом, используется спектр шириной от 600 до 3000 Гц. Имеет режимы двухпозиционной (бит), четырехпозиционной (дибит) и шестнадцатипозиционной (квадробит) QAM. Соответственно, информационная скорость может быть 2400, 4800 и 9600 бит/с. Кроме того, для скорости 9600 бит/с имеет место альтернативная модуляция - 32-позиционная TCM.

V.32bis

Это дуплексный протокол с эхо-подавлением и модуляцией TCM. Используются те же, что в V.32, частота несущего сигнала - 1800 Гц, и модуляционная скорость - 2400 бод. Имеет режимы 16-TCM, 32-TCM, 64-TCM и 128-TCM. Соответственно, информационная скорость может быть 7200, 9600, 12000 и 14400 бит/с. Режим 32-TCM полностью совместим с соответствующим режимом V.32.

V.34

Дуплексный протокол, максимальная скорость 28800 бит/с. Может также поддерживать 24000 и 19200 бит/с.

V.34bis

Другое название -- V.34+. Максимальная скорость 33600 бит/с. Пониженные скорости: 31200, 24000 и 19200 бит/с.

В настоящее время КАМ наиболее широко используется в широкополосных модемах (ADSL, Ethernet). Используется непосредственно алгоритм КАМ (стандарт T1.413 ANSI), а также его разновидности: алгоритмы САР и G.dmt.

Рассмотрим характеристики алгоритма модуляции КАМ более подробно на примере стандарта T1.413 ANSI.

Характеристики алгоритма. [1]

В настоящее время наибольшее распространение получили несколько вариантов QAM. Алгоритм модуляции QAM-4 кодирует сигнал изменением фазы несущего колебания с шагом р/2. Этот алгоритм модуляции имеет название QPSK (Quadrature Phase Shift Keying - квадратурная фазовая манипуляция). Широкое распространение получили также алгоритмы QAM-16, 32, 64, 128 и 256. Алгоритм квадратурной амплитудной модуляции, по сути, является разновидностью алгоритма гармонической амплитудной модуляции и поэтому обладает следующими важными свойствами:

· ширина спектра QAM модулированного колебания не превышает ширину спектра модулирующего сигнала;

· положение спектра QAM модулированного колебания в частотной области определяется номиналом частоты несущего колебания.

Эти полезные свойства алгоритма обеспечивают возможность построения на его основе высокоскоростных ADSL-систем передачи данных по двухпроводной линии с частотным разделением принимаемого (downstream) и передаваемого (upstream) информационных потоков.

Конкретная реализация алгоритма QAM определяет значения следующих параметров:

· размерность модуляционного символа (log2 количества точек созвездия) N [бит]

· значение символьной скорости fSymbol [кбод/сек]

· центральная частота (central rate fc)

Значение информационной скорости V (скорости передачи данных для алгоритма QAM) определяется следующим соотношением:

V = N * fSymbol

Проект стандарта T1.413 ANSI предписывает использование следующих значений символьных скоростей в ADSL-системах передачи данных:

DOWNSTREAM fSymbol

UPSTREAM fSymbol

136 кбод

170 кбод

340 кбод

680 кбод

952 кбод

1088 кбод

85 кбод

136 кбод

Таким образом, при использовании символьной скорости 136 кбод, алгоритм QAM-256 позволяет обеспечить передачу данных со скоростью 1088 Кбит/сек.

Центральная частота fc для конкретной реализации алгоритма модуляции определяется соотношением:

fн + f symbol /2 fc fв - f symbol /2 ,где

fн - нижняя граница спектра модулированного сигнала

f symbol - значение символьной скорости

fв- верхняя граница спектра модулированного сигнала

Энергетический спектр сигнала.

Параметры огибающих линий (масок) энергетических спектров модулированных сигналов ADSL приведены в стандарте T1.413 ANSI. Использование этих масок обеспечивает необходимый уровень электромагнитной совместимости сигналов различной природы, которые передаются по разным парам одного кабеля. Независимо от типа используемого алгоритма модуляции, энергетический спектр модулированного сигнала не должен выходить за пределы установленной маски.

На рисунке 7 представлено схематическое изображение маски для исходящего (UPSTREAM) потока ADSL.

Рисунок 7

Характерные для данной маски частотные диапазоны приведены в таблице:

fнач (KHz)

fкон (KHz)

PSD (dB/Hz)

1

0

4

-97.5

2

25.875

138

-34.5

3

3093

4545

-90

Диапазон 1 не используется для передачи данных в технологии ADSL. В диапазоне 2 должна быть размещена основная часть спектра полезного сигнала. Диапазон 3 не используется для передачи исходящего потока данных ADSL и предназначен для приема входящего потока.

Примерно такую же форму имеет маска для входящего (DOWNSTREAM) потока ADSL.


Рисунок 8

Характерные для маски входящего потока ADSL частотные диапазоны приведены в таблице:

fнач (KHz)

fкон (KHz)

PSD (dB/Hz)

1

0

4

-97.5

2

4

138

-92.5-44.2

3

138

1104

-36.5

Диапазон 1 не используется для передачи данных в технологии ADSL. Диапазон 2 не используется для приема входящего потока данных ADSL и предназначен для передачи исходящего потока. В диапазоне 3 должна быть размещена основная часть спектра полезного сигнала.

Алгоритм модуляции QAM может быть использован для формирования линейного сигнала VDSL- устройств. На рисунке 9 представлено схематическое изображение спектра сигнала QAM-16, который обеспечивает передачу данных со скоростью 26 Мбит/сек - (6.5 Мбод).

Рисунок 9

Представленные на графике результаты были получены на двухпроводной линии длиной 1300 метров (4000 футов) при диметре провода 0.5 мм (26 AWG). На линии имелось одно пассив-ное ответвление (bridge-tap) длиной около 10 метров (30 футов). Наличие пассивных отводов на линии при использовании алгоритма модуляции QAM является одним из факторов, которые приводят к существенному уменьшению значения SNR для принимаемого сигнала. На приведенной выше диаграмме красным пунктиром отмечено искажение спектра модулированного колебания - провал на частоте fс (5.4 МГц), которое вызвано именно наличием пассивного ответвления на линии.

Помехоустойчивость алгоритма КАМ.

Помехоустойчивость ал-горитма QAM обратно пропорциональна его спектральной эффектив-ности. Воздействие помех приводит к возникнове-нию неконтролируемых изменений амплитуды и фазы передаваемого по линии сигнала. При уве-личении числа кодовых точек на фазовой плоско-сти расстояние между ними (P) уменьшается и, следовательно, возрастает вероятность ошибок при распознавании вектора Zm* на приемной стороне. Предельный уровень допустимых амплитудных и фазовых искажений QAM-модулированного сигнала представляет собой круг диаметром P (рис. 10).

Рисунок 10

Центр этого круга совпадает с узлом квадратурной сетки на фазовой плоскости. Заштрихованные области на рисунке соответствуют координатам искаженного вектора QAM-модулированного ко-лебания при воздействии на полезный сигнал помехи, относительный уровень которой опре-деляется соотношением 20dB SNR 30dB.

На диаграмме, которая приведена на рисунке 11, сплошными линиями представлены зависимости ожидаемого значения BER (Bit Error Rate - вероятность ошибок) от величины SNR для различных вариантов алгоритма QAM.

Использование дополнительного кодирования (пунктирные линии), например, по алгоритму Рида-Соломона (Reed-Solomon) позволяет повысить помехоустойчивость модулированного сигнала.

Достоинства алгоритма.

Алгоритм квадратурной амплитудной модуляции является относительно простым в реализации и в то же время достаточно эффективным алгоритмом линейного кодирования xDSL-сигналов. Современные реализации этого алгоритма обеспечивают достаточно высокие показатели спектральной эффективности. Как уже было отмечено выше, ограниченность спектра и относительно высокий уровень помехоустойчивости QAM-модулированного сигнала обеспечивают возможность построения на основе этой технологии высокоскоростных ADSL и VDSL-систем передачи данных по двухпроводной линии с частотным разделением принимаемого и передаваемого информационных потоков.

Недостатки алгоритма.

К недостаткам алгоритма можно отнести относительно невысокий уровень полезного сигнала в спектре модулированного колебания. Этот недостаток является общим для алгоритмов гармонической амплитудной модуляции и выражается в том, что максимальную амплитуду в спектре модулированного колебания имеет гармоника с частотой несущего колебания. Поэтому данный алгоритм в чистом виде достаточно редко используется на практике. Гораздо более широкое распространение получают алгоритмы, которые используют основные принципы QAM и в то же время свободны от его недостатков (например - алгоритм CAP).

Треллис-кодирование. [4]

Треллис-кодирование.

Рассмотрим принципы треллис-кодирования на основе простейшего кодера, состоящего из двух запоминающих ячеек и элементов XOR (рис. 11).

Рисунок 11

Пусть на вход такого кодера поступает со скоростью k бит/с последовательность бит 0101110010. Если на выходе кодера установить считывающую ячейку, работающую с вдвое большей частотой, чем скорость поступления бит на вход кодера, то скорость выходного потока будет в два раза выше скорости входного потока. При этом считывающая ячейка за первую половину такта работы кодера считывает данные сначала с логического элемента XOR 2, а вторую половину такта -- с логического элемента XOR 3. В результате каждому входному биту ставится в соответствие два выходных бита, то есть дибит, первый бит которого формируется элементом XOR 2, а второй -- элементом XOR 3. По временной диаграмме состояния кодера нетрудно проследить, что при входной последовательности бит 0101110010 выходная последовательность будет 00 11 10 00 01 10 01 11 11 10.

Отметим одну важную особенность принципа формирования дибитов. Значение каждого формируемого дибита зависит не только от входящего информационного бита, но и от двух предыдущих бит, значения которых хранятся в двух запоминающих ячейках. Действительно, если принято, что Ai -- входящий бит, то значение элемента XOR 2 определится выражением , а значение элемента XOR 3 -- выражением . Таким образом, дибит формируется из пары битов, значение первого из которых равно , а второго - . Следовательно, значение дибита зависит от трех состояний: значения входного бита, значения первой запоминающей ячейки и значения второй запоминающей ячейки. Такие кодеры получили название сверточных кодеров на три состояния (K = 3) с выходной скоростью ?.

Работу кодера удобно рассматривать на основе не временных диаграмм, а так называемой диаграммы состояния. Состояние кодера будем указывать с помощью двух значений -- значения первой и второй запоминающих ячеек. К примеру, если первая ячейка хранит значение 1 (Q1=1), а вторая -- 0 (Q2=0), то состояние кодера описывается значением 10. Всего возможно четыре различных состояния кодера: 00, 01, 10 и 11.

Пусть в некоторый момент времени состояние кодера равно 00. Нас интересует, каким станет состояние кодера в следующий момент времени и какой дибит будет при этом сформирован. Возможны два исхода в зависимости от того, какой бит поступит на вход кодера. Если на вход кодера поступит 0, то следующее состояние кодера также будет 00, если же поступит 1, то следующее состояние (то есть после сдвига) будет 10. Значение формируемых при этом дибитов рассчитывается по формулам и . Если на вход кодера поступает 0, то будет сформирован дибит 00 (), если же на вход поступает 1, то формируется дибит 11 (). Приведенные рассуждения удобно представить наглядно с помощью диаграммы состояний (рис. 12), где в кружках обозначаются состояния кодера, а входящий бит и формируемый дибит пишутся через косую черту. Например, если входящий бит 1, а формируемый дибит 11, то записываем: 1/11.

Рисунок 12

Продолжая аналогичные рассуждения для всех остальных возможных состояний кодера, легко построить полную диаграмму состояний, на основе которой легко вычисляется значение формируемого кодером дибита.

Используя диаграмму состояний кодера, несложно построить временную диаграмму переходов для уже рассмотренной нами входной последовательности бит 0101110010. Для этого строится таблица, в столбцах которой отмечаются возможные состояния кодера, а в строках -- моменты времени. Возможные переходы между различными состояниями кодера отображаются стрелками (на основе полной диаграммы состояний кодера -- рис. 13), над которыми обозначаются входной бит, соответствующий данному переходу, и соответствующий дибит. Например, для двух первых моментов времени диаграмма состояния кодера выглядит так, как показано на рис. 14. Красной стрелкой отображен переход, соответствующий рассматриваемой последовательности бит.

Рисунок 13 Рисунок 14

Продолжая отображать возможные и реальные переходы между различными состояниями кодера, соответствующие различным моментам времени (рис. 14, 15, 16), получим полную временную диаграмму состояний кодера (рис. 17).

Рисунок 15

Рисунок 16

Рисунок 17

Основным достоинством изложенного выше метода треллис-кодирования является его помехоустойчивость. Как будет показано в дальнейшем, благодаря избыточности кодирования (вспомним, что каждому информационному биту ставится в соответствие дибит, то есть избыточность кода равна 2) даже в случае возникновения ошибок приема (к примеру, вместо дибита 11 ошибочно принят дибит 10) исходная последовательность бит может быть безошибочно восстановлена.

Для восстановления исходной последовательности бит на стороне приемника используется декодер Витерби.

Декодер Витерби

Декодер Витерби в случае безошибочного приема всей последовательности дибитов 00 11 10 00 01 10 01 11 11 10 будет обладать информацией об этой последовательности, а также о строении кодера (то есть о его диаграмме состояний) и о его начальном состоянии (00). Исходя из этой информации он должен восстановить исходную последовательность бит. Рассмотрим, каким образом происходит восстановление исходной информации.

Зная начальное состояние кодера (00), а также возможные изменения этого состояния (00 и 10), построим временную диаграмму для первых двух моментов времени (рис. 17). На этой диаграмме из состояния 00 существует только два возможных пути, соответствующих различным входным дибитам. Поскольку входным дибитом декодера является 00, то, пользуясь диаграммой состояний кодера Треллиса, устанавливаем, что следующим состоянием кодера будет 00, что соответствует исходному биту 0.

Однако у нас нет 100% гарантии того, что принятый дибит 00 является правильным, поэтому не стоит пока отметать и второй возможный путь из состояния 00 в состояние 10, соответствующий дибиту 11 и исходному биту 1. Два пути, показанные на диаграмме, отличаются друг от друга так называемой метрикой ошибок, которая для каждого пути рассчитывается следующим образом. Для перехода, соответствующего принятому дибиту (то есть для перехода, который считается верным), метрика ошибок принимается равной нулю, а для остальных переходов она рассчитывается по количеству отличающихся битов в принятом дибите и дибите, отвечающем рассматриваемому переходу. Например, если принятый дибит 00, а дибит, отвечающий рассматриваемому переходу, равен 11, то метрика ошибок для этого перехода равна 2.

Для следующего момента времени, соответствующего принятому дибиту 11, возможными будут два начальных состояния кодера: 00 и 10, а конечных состояния будет четыре: 00, 01, 10 и 11 (рис. 18).

Рисунок 18

Соответственно для этих конечных состояний существует несколько возможных путей, отличающихся друг от друга метрикой ошибок. При расчете метрики ошибок необходимо учитывать метрику предыдущего состояния, то есть если для предыдущего момента времени метрика для состояния 10 была равной 2, то при переходе из этого состояния в состояние 01 метрика ошибок нового состояния (метрика всего пути) станет равной 2 + 1 = 3.

Для следующего момента времени, соответствующего принятому дибиту 10, отметим, что в состояния 00, 01 и 11 ведут по два пути (рис. 19).

Рисунок 19

В этом случае необходимо оставить только те переходы, которым отвечает меньшая метрика ошибок. Кроме того, поскольку переходы из состояния 11 в состояние 11 и в состояние 01 отбрасываются, переход из состояния 10 в состояние 11, отвечающий предыдущему моменту времени, не имеет продолжения, поэтому тоже может быть отброшен. Аналогично отбрасывается переход, отвечающий предыдущему моменту времени из состояния 00 в 00.

Продолжая подобные рассуждения, можно вычислить метрику всех возможных путей и изобразить все возможные пути.

При этом количество самих возможных путей оказывается не так велико, как может показаться, поскольку большинство из них отбрасываются в процессе построения, как не имеющие продолжения. К примеру, на шестом такте работы декодера по описанному алгоритму остается всего четыре возможных пути.

Аналогично и на последнем такте работы декодера имеется всего четыре возможных пути (рис. 20), причем истинный путь, однозначно восстанавливающий исходную последовательность битов 0101110010, соответствует метрике ошибок, равной 0.

Рисунок 20

При построении рассмотренных временных диаграмм удобно отображать метрику накопленных ошибок для различных состояний кодера в виде таблицы.

Состояния кодера

T=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

00

-

0

2

3

2

3

3

3

0

2

3

01

-

-

3

0

3

2

2

0

3

3

0

10

-

2

0

3

0

3

3

3

2

0

3

11

-

-

3

2

3

0

0

2

3

3

2

Именно эта таблица и является источником той информации, на основе которой возможно восстановить исходную последовательность бит.

В описанном выше случае мы предполагали, что все принятые декодером дибиты не содержат ошибок. Рассмотрим далее ситуацию, когда в принятой последовательности дибитов содержатся две ошибки. Пусть вместо правильной последовательности 00 11 10 00 01 10 01 11 11 10 декодер принимает последовательность 00 11 11 00 11 10 01 11 11 10, в которой третий и пятый дебит являются сбойными. Попробуем применить рассмотренный выше алгоритм Витерби, основанный на выборе пути с наименьшей метрикой ошибок, к данной последовательности и выясним, сможем ли мы восстановить в правильном виде исходную последовательность битов, то есть исправить сбойные ошибки.

Вплоть до получения третьего (сбойного) дибита алгоритм вычисления метрики ошибок для всех возможных переходов не отличается от рассмотренного ранее случая. До этого момента наименьшей метрикой накопленных ошибок обладал путь, отмеченный на рис. 21 красным цветом.

Рисунок 21

После получения такого дибита уже не существует пути с метрикой накопленных ошибок, равной 0. Однако при этом возникнут два альтернативных пути с метрикой, равной 1. Поэтому выяснить на данном этапе, какой бит исходной последовательности соответствует полученному дибиту, невозможно.

Аналогичная ситуация возникнет и при получении пятого (также сбойного) дибита (рис. 22).

Рисунок 22

В этом случае будет существовать уже три пути с равной метрикой накопленных ошибок, а установить истинный путь возможно только при получении следующих дибитов.

После получения десятого дибита количество возможных путей с различной метрикой накопленных ошибок станет достаточно большим, однако на приведенной диаграмме (с использованием таблицы, где представлена метрика накопленных ошибок для различных путей) нетрудно выбрать единственный путь с наименьшей метрикой (на рис. 22 этот путь отмечен красным цветом). По данному пути, пользуясь диаграммой состояния треллис-кодера (см. рис. 13), можно однозначно восстановить исходную последовательность бит 0101110010, невзирая на допущенные ошибки при получении дибитов.

Состояния кодера

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

00

-

0

2

3

3

2

3

4

2

4

5

01

-

-

3

1

2

2

3

2

4

5

2

10

-

2

0

2

1

3

3

4

4

2

5

11

-

-

3

1

2

2

2

3

4

5

4

Рассмотренный сверточный кодер Треллиса на три состояния и алгоритм Витерби являются простейшими примерами, иллюстрирующими, однако, основной принцип работы. В реальности используемые кодеры Треллиса (и в гигабитных адаптерах, и в модемах) гораздо более сложные, но именно благодаря их избыточности удается значительно повысить помехоустойчивость протокола передачи данных.

Список литературы.

1. Филимонов А.. Алгоритмы модуляции протоколов XDSL. http://www.protocols.ru/files/Technologies/xDSL.pdf

2. Голуб В. Квадратурные модуляторы и демодуляторы в системах радиосвязи. http://www.electronics.ru/pdf/3_2003/06.pdf

3. Пасковатый А. Модемные протоколы физического уровня. http://www.analytic.ru/ftproot/pub/byb_art/physics.zip

4. Пахомов С. Технология 1000Base-T на физическом уровне. http://www.compress.ru/article.aspx?id=9774&iid=412

Страницы: 1, 2