скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Конструирование многомерных регуляторов смесительного бака скачать рефераты

p align="left">Рисунок 9 - Реакция второго выхода на возмущения u2(t)

1.3.2 Построение графиков кривой разгона дискретной системы

Система в дискретном времени имеет вид:

dt=24 c.

Зададим , , получим значения на выходах дискретной системы, которые совпадают с расчетом задания в п.4.

Таблица 6 Значение выходов дискретной системы

Возмущение

Реакция выхода системы y(t)

u1=0.01

u2=0

y1

y2 10-3

0

0

3.874

6.247

7.701

8.591

9.137

9.471

9.676

9.802

9.878

0

0

-2.548

-3.523

-3.896

-4.038

-4.093

-4.114

-4.122

-4.125

-4.126

такт

0

1

2

3

4

5

6

7

8

9

10

Рисунок 10 - Реакция выходов системы на возмущения u (t)

1.3.3 Построение графиков кривой разгона нелинейной системы

Данные для построения графиков получены в пункте 1.1.2

Для первого выхода пользуемся таблицей 1. Получившиеся графики можем сопоставить с графиками полученным в пункте 1.3.1, введя поправку на начальное значение параметра

Рисунок 11 - Реакция первого выхода на возмущения u1(t) в пункте 1.3.1

Рисунок 12 - Реакция первого выхода на возмущение для линеаризованной системы

Легко видеть, что эти график совпадают, что говорит о том, что линеаризация по первому выходу проведена на приемлемом уровне

Рисунок 14 - Реакция второго выхода на возмущения u1(t) полученного в пункте 1.3.1

Рисунок 13 - Реакция второго выхода на возмущения для линеаризованной системы

В данном случае имеет место погрешность которую можно связать с ошибкой вносимой кусочно - линейной аппроксимации.

1.3.4 Установившиеся состояния системы

Вычислить постоянное значение состояния системы в условиях

Т.к. установившееся значение предполагает отсутствие динамики, то систему можно записать в следующем виде

1.4 Идентификация многомерной математической модели по данным эксперимента

1.4.1 Активная идентификация

Для дискретной формы системы (F, G, C) из пункта 3. 1. провести реализацию системы.

Запишем систему в виде:

Подавая импульс по первому входу, рассчитаем:

Теперь имея экспериментальные данные, сгруппировав их в матрицы H и H1 можем приступить к их обработки.

Из собственных векторов от () и () построим:

Для проверки идентификации найдем коэффициент передачи системы

Коэффициент передачи, вычисленный по исходным матрицам

Можно сделать вывод о том, что система идентифицирована, верно

1.4.2 Пассивная идентификация

Для дискретной формы системы (F, G, C) из пункта 3. 1. провести пассивную идентификацию системы, предполагая, что вектор входа изменяется соответственно таблице:

Таблица 7 Значение вектора входа для пассивной идентификации.

Такт, n

0

1

2

3

4

5

U(n)

0.01

0

0

0.04

0

0

0

0.01

0.02

0

0.03

0

Используя матрицы системы в дискретной форме для заданных значений вектора входа, рассчитаем значения вектора выхода

Результаты расчета сведем в таблицу:

Такт, n

1

2

3

4

5

6

y(n)

0.003935

0.006321

0.012

0.023

0.026

0.016

-0.0026

0.022

0.053

0.0091

0.071

0.026

Используя данные эксперимента (Таблица 8) можем приступить непосредственно к определению параметров идентифицированной системы

Тогда

Для проверки идентификации найдем коэффициент передачи системы

Система идентифицирована, верно

2. Конструирование многомерных регуляторов, оптимизирующих динамические свойства агрегата

2.1 Конструирование П. - регулятора, оптимизирующего систему по интегральному квадратичному критерию

Регулятор состояния, который оптимизирует систему по критерию:

Определяется по соотношениям:

P=LR1(A,B,Q,R);

При этом Q=R=I

Т.к. матрица С. является инвертированной, для образования регулятора выхода нет необходимости конструировать наблюдатель состояния - недосягаемое состояние просто вычисляется по формуле .

Следовательно, регулятор выхода имеет вид

2.2 Конструирование компенсаторов заданий и измеряемых возмущений

Обозначивши через z заданное значение выхода y и припуская, что , получим

Приняв во внимание, что А=В

Если при компенсации возмущений и заданий учесть «стоимость» управления, записавши критерий в виде

,

то компенсаторы (оптимальные) определяются зависимостями

Значение выхода при действии возмущения f в системе без компенсаторов при z=0

а также с оптимальным компенсатором.

2.3 Конструирование регулятора с компенсатором взаимосвязей

Проверим, или регулятор действительно расцепляет систему, т.е. матрица передаточных функций является диагональной

Используя V как новый вход можно далее записать

Регулятор выхода можно записать в виде

2.4 Конструирование апериодического регулятора

Апериодический регулятор для дискретной системы может быть получен: из условия . Запишем

2.5 Конструирование децентрализованного регулятора

Используя форму Ассео, запишем:

Следовательно, получим

Для определения критерия

2.6 Конструирование надежного регулятора

Если матрица G моделирует отказы каналов измерения, то регулятор находится в виде

Берем s=0.04 При этом значении выполняются необходимые условия:

s>

Результат решения уравнения Ляпунова первого типа

Коэффициент передачи надежного регулятора

Поверим систему с регулятором на устойчивость

Следовательно, система является постоянной при любых отклонениях.

2.7 Конструирование блочно-иерархического регулятора

Воспользуемся регулятором состояния и проверим или можно создать последовательность регуляторов состояния.

; ; ; ;

Рисунок 15 - Иллюстрация монотонного уменьшения величины критерия

Рисунок 16 - Схема блочно - иерархического регулятора

2.8 Конструирование регулятора для билинейной модели

Билинейный регулятор определяется по следующей зависимости

Вводя все компоненты в уравнение, получаем:

2.9 Конструирование регулятора для нелинейной модели

Сконструировать нелинейный регулятор, используя начальную неупрощенную модель бака.

Расчетное соотношение для регулятора -

e=z - x

2.10 Конструирование программного регулятора

Используя линеаризованную модель в дискретном времени, записать программу перевода системы из состояния в состояние

;

3. Анализ свойств сконструированной системы с оптимальным П регулятором

3.1 Построить процесс в системе с П. регулятором

Для построения процесса графика необходимо пользоваться следующую формулу

В итоге получаются следующие графики переходных процессов. Для сравнения приведены переходные процессы для систем без компенсаторов (штрихованная линия)

Рисунок 17 - Сопоставление качеств переходного процесса первого и второго выхода с компенсатором и без него.

Из графика видно, что система выходит на установившееся значение раньше если на ней стоит компенсатор.

3.2 Вычислить критерий оптимальности в системе

Величина критерия с удельным регулятором вычисляется

Отклонение параметров на 10 процентов

Отклонение параметров на 5 процентов

Матрицы чувствительности будут рассчитаны в пункте 3.4:

В конечном счете, получаем

3.3 Оценить потерю качества от децентрализации

Коэффициент передачи децентрализованного регулятора найден в пункте 2.5

Для определения критерия

3.4 Вычислить чувствительность системы

dJ/dA, dJ/dВ, dJ/dС, dJ/dК для системы (А1,В, С), где А1=А+В*К, К=*Р.

Матрицы А1 и P (решение уравнения Риккати) Pлп (решение уравнения Ляпунова ) рассчитывались ранее

Для расчета матрицы V следует решить уравнение Ляпунова вида:

А1*V+V* А1+I=0

Таким образом :

; ;

Все необходимые составляющие для расчета чувствительности у нас есть:

dJ/dA=2•P•V==;

dJ/dВ=2•P•V•=;

dJ/dС=2•••P•V+2••K•V=;

dJ/dК =2•K•V+2••P•V=

3.5 Анализ робастности системы с надежным регулятором

Матрицы отклонения начальной системы

То есть аа=0.0081; bb=0.0289; cc=0.004.

Подставляя значения, полученные в пункте 2.6

в уравнение Scherzinger найдем из нее новую матрицу

Т.к. определенная матрица положительно определенная

то сконструированная система робастная поэтом стационарная и при изменении параметров в расчетных диапазонах величина критерия изменяется очень мало.

3.6 Решение обратной задачи конструирования

Записав расцеплояющей регулятор в виде

Далее используя соотношение

где W - произвольная матрица выбирается из условия S>0

В конечном счете, получаем

4. Результат вспомогательных расчетов

1.Решение уравнения Риккати первого типа

Заданы матрицы

Сформируем матрицу М

Найдем ее собственные значения

Выполним преобразование подобия

Решение уравнения Риккати

2.Решение уравнения Ляпунова

3. Вычисление матричной экспоненты

4.Опеделение Фробениусовой матрицы

5. Определение Вандермодовой матрицы

Выводы

Исследован технический объект - смесительный бак. Получен спектр модели: линейная, нелинейная, экспериментальная и аналитическая модель. Проведены эквивалентное аппроксимационое преобразование модели агрегата

Исследованы качественные и количественные свойства системы. Разработаны регуляторы управления объектом: П. - регулятор;

апериодический регулятор; надежный регулятор; блочно - иерархический регулятор; регулятор для билинейной и для нелинейной модели; программный регулятор; регулятор с компенсатором взаимосвязей. А также компенсаторы возмущений и компенсаторы на задании.

Проанализированы процессы в сконструированной системе с регулятором в качественном и количественном отношении (построен процесс в системе с регулятором, вычислен критерий оптимальности, проанализирована робастность, решена обратная задачи конструирования ).

На основании данного анализа можно сделать вывод о том, что наиболее подходящим регулятором для рассмотренной системы является оптимальный П. - регулятор. Хотя он и обладает некоторым перерегулированием, имеет небольшую статическую ошибку (при отсутствии компенсатора на задание), однако все эти недостатки компенсируются его простотой в установке и обслуживании. Помимо этого он обладает наименьшим временем переходного процесса, неплохим показателем критерия оптимальности. В силу своей простоты он является более надежным в том плане, что вероятность выхода из строя самого регулятора мала.

Литература

1. Стопакевич А.А., Методические указания к практическим занятиям по курсу « Основы системного анализа и теория систем » для бакалавров по автоматики. - Одесса: ОНПУ, 1997.

2. Стопакевич А.А. Сложные системы: анализ, синтез, управление. - Одесса: ОНПУ 2004

Страницы: 1, 2