скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Информационный процесс в автоматизированных системах скачать рефераты

этой ситуации преимущественнее оказываются позиционные системы счисления.

Существуют позиционные и непозиционные системы счисления.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. В позиционной системе счисления представления чисел далеко не так просты и очевидны, как в «римской» системе счисления, систематичность представления, основанная на «позиционном весе» цифр, обеспечивает простоту выполнения операций умножения и деления.

В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. В «римской» системе счисления каждый числовой знак в записи любого числа имеет одно и то же значение, т.е. значение числового знака не зависит от его расположения в записи числа. В римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти, а I - это единица.

Для изображения чисел в настоящее время используются в основном позиционные системы счисления. Привычной для всех является десятичная система счисления. В этой системе для записи любых чисел используется только десять разных знаков (цифр): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Эти цифры введены для обозначения первых десяти последовательных чисел, а следующее число 10 и т.д. обозначается уже без использования новых цифр. Однако введением этого обозначения сделан важный шаг в построении системы счисления: значение каждой цифры поставлено в зависимость от того места, где она стоит в изображении числа.

Десятичная запись любого числа X в виде последовательности цифр: , основана на представлении этого числа в виде полинома:

,

где каждый коэффициент аi, может быть одним из чисел, для обозначения которых введены специальные знаки. Запись числа X в формуле представляет собой просто перечисление всех коэффициентов этого полинома. Точка, отделяющая целую часть числа от дробной, служит для фиксации конкретных значений каждой позиции в этой последовательности цифр и является началом отсчета.

Количество К различных цифр, употребляющихся в позиционной системе счисления, называется ее основанием системы счисления, а сама система счисления называется К-ичной. Например, основанием десятичной системы счисления является число 10; двоичной - число 2; троичной - число 3 и т.д. Для записи произвольного числа в K-ичной системе счисления достаточно иметь К разных цифр . Эти цифры служат для обозначения некоторых различных целых чисел, называемых базисными.

Запись произвольного числа X в K-ичной позиционной системе счисления основывается на представлении этого числа в виде полинома:

,

где каждый коэффициент а, может быть одним из базисных чисел и изображается одной цифрой. В качестве базисных чисел берутся последовательные целые числа от 0 до К-1 включительно.

Позиции цифры, отсчитанные от запятой (точки), отделяющей целую часть от дробной, называются разрядами. В позиционной системе счисления вес каждого разряда больше соседнего в число раз, равное основанию системы К.

Пример: Для десятичной системы счисления (основание К=10) имеем число 6321.564. Веса разряда и коэффициенты а для этого числа будут следующими:

Все известные позиционные системы счисления являются аддитивно-мультипликативными. Особенно отчетливо аддитивно-мультипликативный способ образования чисел из базисных выражен в числительных русского языка, например пятьсот шестьдесят восемь (т.е.5 сотен + 6 десятков + 8).

Арифметические действия над числами в любой позиционной системе счисления производятся по тем же правилам, что и в десятичной системе, так как все они основываются на правилах выполнения действий над соответствующими полиномами. Нужно только пользоваться теми таблицами сложения и умножения, которые имеют место при данном основании К системы счисления. Во всех позиционных системах счисления с любым основанием К умножения на числа вида Кm, где m - целое число, сводится просто к перенесению запятой у множимого на m разрядов вправо или влево (в зависимости от знака m), так же как и в десятичной системе.

Для указания того, в какой системе счисления записано число, условимся при его изображении основание системы счисления указывать в виде нижнего индекса при нем, например, 35,648 или подстрочным индексом, заключенным в круглые скобки, например: 1101(2).

В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т.д.

Продвижением цифры называют замену её следующей по величине. Продвинуть цифру 1 значит заменить её на 2, продвинуть цифру 2 значит заменить её на 3 и т.д. Продвижение старшей цифры (например, цифры 9 в десятичной системе) означает замену её на 0. В двоичной системе, использующей только две цифры - 0 и 1, продвижение 0 означает замену его на 1, а продвижение 1 - замену её на 0.

Целые числа в любой системе счисления порождаются с помощью Правила счета:

Для образования целого числа, следующего за любым данным целым числом, нужно продвинуть самую правую цифру числа; если какая-либо цифра после продвижения стала нулем, то нужно продвинуть цифру, стоящую слева от неё.

В настоящее время в ЭВМ применяют двоичную, восьмеричную и шестнадцатеричную системы счисления.

3.6.2. Двоичная система счисления

В современной вычислительной технике, в устройствах автоматики, связи используется двоичная система счисления
- система счисления с наименьшим возможным основанием, где для изображения числа используются две цифры: 0 и 1.

Двоичная система счисления имеет ряд преимуществ перед другими системами:

для ее реализации нужны технические устройства с двумя устойчивыми состояниями (есть ток - нет тока, намагничен - не намагничен и т.п.);

представление информации посредством только двух состояний надежно и помехоустойчиво;

возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;

двоичная арифметика намного проще десятичной.

Недостаток двоичной системы - быстрый рост числа разрядов, необходимых для записи чисел, т.е. в громоздкости записи чисел, но это не имеет существенного значения для ЭВМ. Если возникает необходимость кодировать информацию «вручную», например, при составлении программы на машинном языке, предпочтительнее оказывается пользоваться восьмеричной, или шестнадцатеричной системой счисления.

Произвольное число X в двоичной системе представляется в виде полинома:

,

где каждый коэффициент аi может быть либо 0, либо 1.

Пример: Двоичное число - 1011012

,

т.е. .

Для отделения целой части от дробной используется точка (запятая). Значение веса разрядов справа от точки (запятой) равно основанию двоичной системы (2), возведенному в отрицательную степень. Такие веса - это дроби вида: 1/2, 1/22, 1/23, 1/24, 1/25 или 1/2, 1/4, 1/8, 1/16.

Каждая позиция, занятая двоичной цифрой, называется бит. Бит является наименьшей единицей информации в ЭВМ. Наименьшим значащим битом (МЗР) называют самый младший двоичный разряд, а самым старшим двоичным разрядом - наибольший значащий бит (СЗР). В двоичном числе эти биты имеют, соответственно, наименьший и наибольший вес. Обычно двоичное число записывают так, что старший значащий бит является крайним слева.

3.6.3. Восьмеричная система счисления

В восьмеричной системе счисления базисными числами являются 0, 1, 2, 3, 4, 5, 6, 7
. Запись любого числа в этой системе основывается на его разложении по степеням числа восемь с коэффициентами, являющимися указанными выше базисными числами.

Произвольное число X в восьмеричной системе представляется в виде полинома:

,

где каждый коэффициент аi может быть 0, 1, 2, 3, 4, 5, 6, 7.

Например, десятичное число 83,5 в восьмеричной системе будет изображаться в виде 123,48 и в виде полинома:

Восьмеричная система счисления не нужна ЭВМ в отличие от двоичной системы. Она удобна как компактная форма записи чисел и используется программистами (например, в текстах программ для более краткой и удобной записи двоичных кодов команд, адресов и операндов).

В восьмеричной системе счисления вес каждого разряда кратен восьми (1/8), поэтому восьмиразрядное двоичное число позволяет выразить десятичные величины в пределах 0-255, а восьмеричное охватывает диапазон 0 - 99999999.Т. к.8=23, то каждый восьмеричный символ можно представить трехбитовым двоичным числом.

Для перевода числа из двоичной системы счисления в восьмеричную необходимо разбить это число влево (для целой части) и вправо (для дробной) от точки (запятой) на группы по три разряда (триады) и представить каждую группу цифрой в восьмеричной системе счисления. Крайние неполные триады дополняются необходимым количеством незначащих нулей.

Перевод из восьмеричной системы счисления в двоичную систему осуществляется путем представления каждой цифры восьмеричного числа трехразрядным двоичным числом.

3.6.4. Шестнадцатеричная система счисления

В шестнадцатеричной системе счисления базисными являются числа от нуля до пятнадцати
. Эта система отличается от рассмотренных ранее тем, что в ней общепринятых (арабских) цифр не хватает для обозначения всех базисных чисел, поэтому приходится вводить в употребление новые символы. Обычно для обозначения первых десяти целых чисел от нуля до девяти используют арабские цифры, а для следующих целых чисел от десяти до пятнадцати используются буквенные обозначения A, B, C, D, E, F.

Произвольное число X в восьмеричной системе представляется в виде полинома:

,

где каждый коэффициент аi может быть 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F:

Шестнадцатеричная система счисления позволяет еще короче записывать многоразрядные двоичные числа и, кроме того, сокращать запись 4-разрядного двоичного числа, т.е. полубайта, поскольку 16=24. Шестнадцатеричная система так же применяется в текстах программ для более краткой и удобной записи двоичных чисел.

Для перевода числа из двоичной системы счисления в шестнадцатеричную, необходимо разбить это число влево и вправо от точки на тетрады и представить каждую тетраду цифрой в шестнадцатеричной системе счисления.

Для перевода числа из шестнадцатеричной системы счисления в двоичную, необходимо наоборот каждую цифру этого числа заменить тетрадой.

3.6.5. Переводы чисел, простейшая арифметика в системах счисления

При переводе целого десятичного числа в систему с основанием q его необходимо последовательно делить на q до тех пор, пока не останется остаток, меньший или равный q-1
. Число в системе с основанием q записывается как последовательность остатков от деления, записанных в обратном порядке, начиная с последнего.

Пример: Перевести число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

2-я с. с.

8-я с. с.

16-я с. с.

Ответ: 7510 = 1 001 0112 = 1138 = 4B16

При переводе числа из двоичной (8-чной, 16-ричной) системы в десятичную надо это число представить в виде суммы степеней основания его системы счисления.

Пример:

Разряды 3 2 1 0 - 1

Число 1011,12=1*23+1*21+1*20+1*2-1=11,510.

Разряды 2 1 0 - 1

Число 276,58=2*82+7*81+6*80+5*8-1=190,62510.

Разряды 2 1 0

Число 1F316=1*162+15*161+3*160=49910.

Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему прост: достаточно каждую цифру заменить эквивалентной ей двоичной триадой или тетрадой.

Пример:

;

Чтобы перевести число из двоичной системы в восьмеричную (шестнадцатеричную), его нужно разбить влево и вправо от запятой на триады (для восьмеричной) или тетрады (для шестнадцатеричной), каждую группу заменить соответствующей восьмеричной (шестнадцатеричной) цифрой.

Пример:

При переводе правильной десятичной дроби в систему счисления с основанием q нужно саму дробь, затем дробные части всех последующих произведений последовательно умножать на q, отделяя после каждого умножения целую часть произведения. Число в новой системе счисления записывается как последовательность полученных целых частей произведения. Умножение производится до тех пор, пока дробная часть произведения не станет равной нулю. Это значит, что сделан точный перевод. В противном случае перевод осуществляется до заданной точности.

Пример: Перевести число 0,35 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Двоичная с. с.

Восьмеричная с. с.

Шестнадцатеричная с. с.

Ответ: 0,3510 = 0,010112 = 0,2638 = 0,5916.

Арифметические операции в позиционных системах счисления.

Рассмотрим основные арифметические операции: сложение, вычитание, умножение и деление. Правила выполнения этих операций в десятичной системе хорошо известны - это сложение, вычитание, умножение столбиком и деление углом. Эти правила применимы и ко всем другим позиционным системам счисления, но нужно пользоваться соответствующими таблицами сложения и умножения.

Сложение

Таблицы сложения составляются с помощью Правила Счета:

2-я с. с.

8-я с. с.

16-я с. с.

При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.

Пример: Сложим числа 15 и 6 в 2, 8, 16 системах счисления.

2-я с. с.

8-я с. с.

16-я с. с.

Ответ: 15+6 = 2110 = 101012 = 258 = 1516.

Вычитание

Пример: Вычтем число 59,75 из числа 201,25.

2-я с. с.

8-я с. с.

16-я с. с.

Ответ: 201,2510-59,7510=141,510=10001101,12=215,48=8D,816.

Умножение

Двоичная система

Восьмеричная система

Пример: Перемножим числа 5 и 6.

10-я с. с.

2-я с. с.

8-я с. с.

Ответ: 5*6 = 3010 = 111102 = 368.

Деление

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе.

Пример. Разделим число 30 на число 6.

10-я с. с.

2-я с. с.

8-я с. с.

Ответ: 30: 6 = 510 = 1012 = 58.

3.6.6. Как представляются в компьютере целые числа

Целые числа могут представляться в компьютере со знаком или без знака. Целые числа без знака обычно занимают в памяти один или два байта и принимают в однобайтовом формате значения от 000000002 до 111111112, а в двубайтовом формате - от 00000000 000000002 до 11111111 111111112.

Диапазоны значений целых чисел без знака

Формат числа в байтах

Диапазон

Запись с порядком

Обычная запись

1

0...28-1

0...255

2

0...216-1

0...65535

Страницы: 1, 2, 3, 4, 5, 6