скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Элементная база цифровых радиопередающих устройств скачать рефераты

Элементная база цифровых радиопередающих устройств

Содержание:

Глава 1. Аналого-цифровые преобразователи в радиопередатчиках

Глава 2. Цифро-аналоговые преобразователи

2.1 ЦАП общего применения для НЧ трактов, систем управления и контроля передатчиков

2.2 Специализированные быстродействующие ЦАП с высоким разрешением для цифровых передатчиков

Глава 3. Цифровые модуляторы и преобразователи частоты

Введение

Радиопередающие устройства (РПдУ) применяются в сферах телекоммуникации, телевизионного и радиовещания, радиолокации, радионавигации. Стремительное развитие микроэлектроники, аналоговой и цифровой микросхемотехники, микропроцессорной и компьютерной техники оказывает существенное влияние на развитие радиопередающей техники как с точки зрения резкого увеличения функциональных возможностей, так и с точки зрения улучшения ее эксплуатационных показателей. Это достигается за счет использования новых принципов построения структурных схем передатчиков и схемотехнической реализации отдельных их узлов, реализующих цифровые способы формирования, обработки и преобразования колебаний и сигналов, имеющих различные частоты и уровни мощности.

Основным направлением развития систем связи является обеспечение множественного доступа, при котором частотный ресурс совместно и одновременно используется несколькими абонентами. К технологиям множественного доступа относятся TDMA, FDMA, CDMA и их комбинации. При этом повышают требования и к качеству связи, т.е. помехоустойчивости, объему передаваемой информации, защищенности информации и идентификации пользователя и пр. Это приводит к необходимости использования сложных видов модуляции, кодирования информации, непрерывной и быстрой перестройки рабочей частоты, синхронизации циклов работы передатчика, приемника и базовой станции, а также обеспечению высокой стабильности частоты и высокой точности амплитудной и фазовой модуляции при рабочих частотах, измеряемых гигагерцами. Что касается систем вещания, здесь основным требованием является повышение качества сигнала на стороне абонента, что опять же приводит к повышению объема передаваемой информации в связи с переходом на цифровые стандарты вещания. Крайне важна также стабильность во времени параметров таких радиопередатчиков - частоты, модуляции. Очевидно, что аналоговая схемотехника с такими задачами справиться не в состоянии, и формирование сигналов передатчиков необходимо осуществлять цифровыми методами.

Глава 1. Аналого-цифровые преобразователи в радиопередатчиках

Аналого-цифровые преобразователи применяются в цифровых радиопередатчиках для решения следующих основных задач:

преобразование входных аналоговых сигналов в цифровую форму для последующей цифровой модуляции ВЧ колебаний;

сбор данных с датчиков систем диагностики, контроля и регулирования параметров каскадов передатчика (например, датчиков падающей и отраженной волны, выходной мощности, питающих напряжений, токов и температурного режима транзисторов выходных каскадов для их защиты и т.п.);

оцифровывание сигнала обратной связи систем авторегулирования, работающих по выходному сигналу (для обеспечения линейности управления амплитудой выходного сигнала передатчика).

С первыми двумя задачами из названных выше призваны справляться низкочастотные АЦП общего применения, последняя задача - для специальных ВЧ АЦП, разработанных для работы на радиочастотах. Рассмотрим подробнее эти два класса АЦП.

Низкочастотные АЦП (с частотой 10...1000000 выборок в секунду) строятся с использованием архитектуры последовательного приближения либо с использованием сигма-дельта архитектуры. Для таких АЦП характерны большое число разрядов (10...24), высокая точность преобразования (дифференциальная и интегральная нелинейность - доли единиц младшего разряда шкалы), малая потребляемая мощность (единицы мВт).

Рис.1.1.

Структура АЦП последовательного приближения показана на рис. 1.1. По команде начала преобразования устройство выборки и хранения (УВХ) берет отсчет входного сигнала, а в регистр последовательного приближения записывается число1000...000, которое подается на вход ЦАП. Компаратор сравнивает напряжение на выходе ЦАП и входное напряжение, и если входное напряжение больше напряжения ЦАП, единица в старшем разряде остается, а в противном случае сбрасывается. После этого устанавливается в 1 следующий разряд (на входе ЦАП 0100...000 или 1100...000) и выходное напряжение ЦАП опять сравнивается со входным напряжением, после чего значение второго слева разряда сохраняется равным 1 или сбрасывается. Такой цикл повторяется для всех разрядов регистра, и когда все они примут определенное значение, АЦП подает сигнал готовности результата преобразования.

АЦП последовательного приближения имеют разрешение до 16 бит, а их скорость может достигать 0.1...1.5 MSPS (миллионов выборок в секунду). Такие АЦП используют в мультиплексированных системах сбора данных, так как часто их выполняют с мультиплексором на входе, имеющим от 2 до 8 каналов входных аналоговых сигналов.

Сигма-дельта АЦП построен с использованием принципов избыточной дискретизации с последующей цифровой фильтрацией и децимацией (уменьшением количества выборок). Алгоритм обработки сигнала в сигма-дельта АЦП выбран так, что значительная часть шумов квантования остается за пределами полосы пропускания цифрового фильтра АЦП, благодаря чему достигается возможность повышения разрядности преобразования. Сложная математическая обработка сигнала в таком АЦП приводит к снижению его скорости до 10...50000 выборок в секунду, но преимуществами сигма-дельта АЦП при этом являются очень высокая разрешающая способность (16-24 разряда), чрезвычайно малая дифференциальная нелинейность, малая потребляемая мощность (милливатты). Такие АЦП применяют для обработки сигналов датчиков и аналоговых НЧ сигналов (голосовых частот). Их также делают многоканальными (2-4 канала) для обработки нескольких аналоговых сигналов, но при этом используется свой АЦП на каждый канал.

Сигма-дельта АЦП обладают дополнительными возможностями: не требуют УВХ, имеют встроенные усилители с программируемым коэффициентом усиления, программируемые цифровые фильтры (ФНЧ, ФВЧ, полосовой, режекторный); пример АЧХ 16-разрядного КИХ-фильтра АЦП AD1877 показан на рис. 1.2.

Рис. 1.2.

Высокоскоростные АЦП выполняют с параллельной (Flash ADC) или последовательно-параллельной архитектурой, называемой иначе конвейерной структурой. Наиболее быстродействующей является параллельная архитектура, показанная на рис. 1.3. Она состоит из линейки компараторов, у каждого из которых опорное напряжение ниже, чем у предыдущего. Входной сигнал подается на все компараторы сразу, а затем просто преобразовывается в двоичный код дешифратором, благодаря чему преобразование занимает очень небольшое время - десятки наносекунд, так что такой АЦП способен работать на скоростях выше 50 MSPS. К недостаткам параллельных АЦП надо отнести небольшую разрядность (6...8 разрядов), так как увеличение числа разрядов на 1 требует удвоения числа компараторов, и большую потребляемую мощность, определяемую быстродействием логических элементов АЦП (сотни мВт). Примером параллельного АЦП может послужить AD9066 - сдвоенный согласованный АЦП, имеющий скорость 60 MSPS, 6 разрядов и 400 мВт потребляемой мощности.

Рис. 1.3.

Необходимо отметить, что существует архитектура интерполирующих параллельных АЦП, позволяющая повысить разрядность до 10 при сохранении всех преимуществ параллельных АЦП.

Последовательно-параллельные (конвейерные) АЦП позволяют работать на высоких частотах (20...60 MSPS) при меньших мощностях потребления (десятки мВт) и более высокой разрядности (10...16 разрядов), чем параллельные АЦП. Параллельные АЦП могут использоваться как части конвейерной архитектуры.

Рис. 1.4.

Представленная на рис. 1.4. конвейерная структура работает следующим образом. УВХ-1 фиксирует входной сигнал, после чего первый 6-разрядный АЦП оцифровывает его и подает результат своей работы на ЦАП, на выходе которого образуется 6-разрядное приближение аналогового сигнала. На выходе УВХ-2 хранится копия исходного отсчета аналогового сигнала, и из нее вычитается полученное в первом каскаде структуры 6-разрядное приближение; полученная разница усиливается, а затем оцифровывается 7-разрядным АЦП (лишний разряд здесь нужен для коррекции ошибки). Полученные с выхода первого и второго АЦП разряды объединяются и отправляются в выходной регистр. Таким образом, применение двух АЦП на 6+7 разрядов существенно экономит число компараторов по сравнению с 12-разрядным параллельным АЦП, что позволяет выиграть в потребляемой мощности при прочих равных параметрах.

Отметим, что существуют не только двухкаскадные, но и 3-каскадные, и 4-каскадные конвейерные АЦП, имеющие в составе 3-разрядные параллельные АЦП, чем достигается еще большая экономия потребляемой мощности за счет некоторого снижения быстродействия (до 3...20 MSPS). Выпускаются также сдвоенные согласованные конвейерные АЦП, имеющие внутреннее мультиплексирование с выходом на одну общую шину данных (AD9201, рис. 1.5).

Рис. 1.5.

Необходимо указать на одну особенность современных быстродействующих АЦП: полоса пропускания по входному сигналу за счет УВХ у них может значительно превышать половину максимальной частоты дискретизации (Fs/2), благодаря чему такие АЦП могут оцифровывать узкополосные ВЧ сигналы, лежащие выше этой частоты. Известно, что спектр выходного сигнала АЦП состоит из копий спектра входного сигнала, сдвинутых на частоты, кратные частоте дискретизации Fs:

.

Рассмотрим пример такой обработки ВЧ сигнала, при которой мы сможем обработать с помощью АЦП сигнал, частота которого выше частоты выборок Fs = 90 МГц. В классическом в смысле теоремы Котельникова случае частота сигнала FA не должна превышать 45 МГц. Пусть это будет FA = 20 МГц. По рис. 1.6.а видно, что в этом случае выходной сигнал АЦП содержит сигнал со средней частотой 20 МГц, которая может быть обработана последующим сигнальным процессором. Теперь пусть частота входного сигнала FA = 160 МГц. Казалось бы, наш АЦП с Fs = 90 МГц не сможет обработать столь высокочастотный сигнал, ведь по теореме Котельникова неизбежны искажения в выходном сигнале благодаря наложению спектров. Однако, такого не происходит благодаря узкополосности сигнала, и на выходе АЦП мы вновь видим сигнал (точнее, «образ» сигнала) со средней частотой 20 МГц. Правда, спектр этого сигнала инвертирован, но это можно учесть при обработке в сигнальном процессоре.

Рис. 1.6.

Таким образом, ВЧ АЦП с быстродействующими УВХ на входе могут быть использованы для квантования узкополосных сигналов, частоты которых превышают частоты дискретизации АЦП, что может найти применение в радиопередатчиках для оцифровывания непосредственно их выходных колебаний с целью создания обратной связи.

Глава 2. Цифро-аналоговые преобразователи

2.1 ЦАП общего применения для НЧ трактов, систем управления и контроля передатчиков

Все ЦАП, применяемые в радиопередатчиках, уместно разделить на два класса: ЦАП общего применения для работы в низкочастотных трактах, системах управления и контроля передатчика и специализированные быстродействующие ЦАП, предназначенные для формирования ВЧ сигналов на рабочей или промежуточной частоте с определенным видом модуляции. В настоящем параграфе речь пойдет о ЦАП первого из названных классов. Основные области применения таких ЦАП:

обработка сигналов в информационных трактах приемопередатчиков;

управление режимами работы каскадов передатчика (например, коэффициентом усиления транзисторных каскадов) согласно кодовым командам встроенного управляющего микроконтроллера;

управление приводами систем настройки передатчика.

К ЦАП этого класса в передатчиках предъявляются следующие требования:

низкое потребление энергии (милливатты);

последовательная или параллельная загрузка кода;

относительно высокое разрешение (10-12 бит);

относительная точность и дифференциальная нелинейность не хуже 1-2 единиц младшего разряда;

невысокое быстродействие (до единиц Msps);

многоканальность (несколько самостоятельных ЦАП на одном кристалле).

Рис.2. 1.1.

В качестве ядра преобразования в таких ЦАП обычно применяют структуру с одним ключом на разряд сигнала (так называемую бинарную), которая показана на рис. 2.1.1. Такая структура проста, содержит минимальное «переключателей», но у нее имеются и недостатки, главный из которых - кодозависимые ложные сигналы (помехи из-за выбросов коммутации ключей старших разрядов). Тем не менее, при формировании НЧ сигналов и постоянных управляющих режимами каскадов передатчика напряжений и токов, с этим недостатком можно легко примириться.

Рис. 2.1.2.

Примером типовой архитектуры ЦАП общего применения может служить микросхема AD8582 (рис. 2.1.2). Это сдвоенный ЦАП с хорошим согласованием каналов, потребляющий меньше 5 мВт от единственного источника питания 5 В. Структура ЦАП содержит два одинаковых 12-битных ядра ЦАП, аналогичных показанному на рис. 2.1.1, а также встроенные операционные усилители для перевода выходного сигнала из тока в напряжение. Особенностью данной микросхемы, которая присуща многим современным ЦАП, является двойная буферизация входного кода, которая позволяет реализовать следующие возможности:

параллельная и последовательная загрузка данных;

раздельная поочередная загрузка каждого из ЦАП на кристалле (путем раздельной записи во входные регистры каждого ЦАП) и при этом синхронная смена данных на выходах всех ЦАП (путем одновременной записи в выходные регистры данных, накопленных во входных регистрах каждого ЦАП).

Других особенностей такие ЦАП не имеют. Их разновидности и работа подробно описаны в литературе.

2.2 Специализированные быстродействующие ЦАП с высоким разрешением для цифровых передатчиков

Синтезировать ВЧ сигнал с рабочей или промежуточной частотой и заданным видом модуляции можно и на выходе специализированных ЦАП, освоение которых промышленностью началось в 80-х годах, а серьезные успехи в этом направлении были достигнуты в 90-х годах. К таким ЦАП предъявляются высокие требования по быстродействию (десятки или сотни MSPS) и очень жесткие требования по качеству выходного сигнала, которое оценивается следующими основными параметрами:

· SFDR - свободный от паразитных составляющих динамический диапазон,

· CNR - отношение сигнал/шум на частоте несущей,

· IMD - коэффициент интермодуляционных искажений,

· ACPR - коэффициент развязки соседних каналов по мощности.

Приборы, у которых SFDR превышает 70 дБ, CNR - 65 дБ, уже имеет смысл использовать для формирования сигналов в системах телекоммуникаций.

Применение для синтеза модулированных ВЧ сигналов ЦАП с обычной архитектурой (с одним ключом на разряд кодирующего сигнала, рис. 2.1.1) оказалось невозможным вследствие присущего им повышенного уровня нелинейных искажений и шумов при работе на ВЧ, что приводит к возникновению паразитных составляющих в спектре выходного сигнала ЦАП (см. SFDR, CNR). Главными недостатками архитектуры с одним ключом на разряд являются паразитные выбросы в сигнале ЦАП при коммутации ключей и неточность восстановления значений старших разрядов сигнала. Первое объясняется тем, что при смене кода на входах ЦАП одновременно замыкаются или размыкаются несколько ключей, причем наибольшие выбросы в выходном сигнале обусловлены коммутацией ключей старших разрядов. (Такие выбросы в англоязычной литературе называют glitch, их энергия измеряется в нВ*с.) Второе можно объяснить тем, что неточность резисторов старших разрядов матрицы R-2R приводит к нелинейным искажениям сигнала на выходе ЦАП. Такие искажения называются кодозависимыми.

Страницы: 1, 2