скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Электронный измеритель-регулятор температуры скачать рефераты

p align="left">

Например при Rн =0,3 кОм и Сгас= 1 мкФ, Uст =12 В наибольший ток через стабилитрон составляет 82мА.

Итак, приводим расчет БТБП. Пусть, Uн =18 В, Rн =0,4 кОм, что соответствует Iн =45 мА. Из Таблица 2.3.1. следует, что наиболее подходящим является конденсатор Сгас емкостью 1 мкФ, поскольку его средний ток (62,2 мА) при низкоомной нагрузке превышает необходимый).

Проверим, до какой величины может снизиться напряжение Uэф сети, чтобы через стабилитрон протекал ток Iст

Uэф = (3,53 / Сгас) * (Ucт / Rн + Iст мин) = 169,44 В

что соответствует снижению сетевого напряжения на 22%. Следовательно,

Хс = 10 / р * Сгас = 3,18 (кОм)

Для БТБП подходят пара стабилитронов Д814Б, максимальный ток стабилизации которых составляет 24 мА, а напряжение стабилизации - около 18 В.

При напряжении сети 220 В номинальное напряжение конденсатора Сгас должно быть не менее 400 В, то есть примерно с 30% запасом по отношению к амплитудному сетевому, то есть

v2 * U дейст = 311 В,

311 В + 30% = 404 В

Подбирая конденсатор Сгас, следует учитывать, что номинальное напряжение конденсатора данного типа не всегда совпадает с допустимым для него переменным напряжением. Так, например, наиболее распространенные металлобумажные малогабаритные конденсаторы типа МБМ на номинальное напряжение 500 В могут работать только в цепях, где амплитуда переменного напряжения не превышает 150 В. Амплитуда же сетевого напряжения 220 В, как уже сказано выше, достигает 311В, что более чем вдвое превышает допустимое для них значение. Иначе говоря, применять в БТБП конденсаторы типа БМ, МБМ, МБГО, МБГП, МБГЦ-1, МБГЦ-2 нельзя.

Наиболее надежно в БТБП работают конденсаторы МБГЧ-1, МБГЧ-2 на номинальное напряжение 500 В (от старых стиральных машин, люминесцентных светильников и т.п.) или КБГ-МН, КБГ-МП, но на номинальное напряжение 1000 В.

Точно рассчитать емкость фильтрующего конденсатора Сф аналитическим путем затруднительно. Поэтому ее подбирают экспериментально. Ориентировочно следует считать, что на каждый 1 миллиампер среднего потребляемого тока требуется как минимум 310 микрофарад этой емкости, если выпрямитель БТБП двухполупериодный. Номинальное напряжение используемого оксидного конденсатора Сф должно быть не менее Uст.

БТБП желательно дополнить еще двумя вспомогательными резисторами. Один из них, сопротивление которого составляет 300 кОм…1 МОм, включают параллельно конденсатору Сгас. Этот резистор нужен для разряда данного конденсатора после отключения устройства от сети. Второй (балластный) резистор сопротивлением 1051 Ом включают в разрыв одного из сетевых проводов, например последовательно с конденсатором Сгас. Он ограничивает ток через диоды моста в момент подключения БТБП к сети, когда начальный ток заряда конденсатора Сф весьма велик. Мощность рассеяния обоих резисторов должна быть не менее 1 Вт, что гарантирует от возможных поверхностных пробоев этих резисторов высоким напряжением.

Из-за балластного резистора средняя мощность, потребляемая от сети, несколько увеличивается, так как добавляются потери на нагрев дополнительного резистора (конденсатор Сгас практически не нагревается).

Несмотря на то что средний ток в цепи остается практически тем же или становится чуть меньше, потребляемая мощность существенно возрастает. При Сгас=1 мкФ, Uст=18 В, R.н=0,2 кОм и Rбал= 51 Ом средний потребляемый ток останется приблизительно тем же (55 мА), что и без балластного резистора. Однако мощность, рассеиваемая на балластном резисторе составляет (понадобится резистор МЛТ-1).

Рбал = Uбал^2 / Rбал = 5,6 ^2 / 100 = 313,6 (мВт)

Растет и средняя потребляемая мощность

Рср = (198 * Uст / Хс) + Рбал = (198 * 18 / 3,183) + 313,6 = 1433,3 (мВт)

что соответствует росту мощности на 36% (относительно 2230 мВт).

За счет Rбал стабилитрон нагружен несколько меньше. Немного снижается и максимальный импульсный ток через него, но вот средняя потребляемая мощность, как уже показано выше, заметно увеличивается.

В БТБП можно использовать диодные мосты КЦ405 или КЦ402 с буквенными индексами Ж или И, если средний ток не превышает 600 мА, либо с индексами А, Б, если значение тока достигает 1 А. Пригодны также четыре диода, включенные по схеме моста, например серий КД105Б (В, Г), Д226Б (В), рассчитанные на ток до 300 мА; серий КД209А (Б, В) - на ток до 500 или 700 мА; КД226В (Г, Д) - на ток до 1,7 А.

3. Разработка конструкции электронного термометра

3.1 Описание общей конструкции электронного термометра

Конструктивно термометр выполнен в металлическом корпусе, состоящем из основания и крышки. Все элементы термометра размещены на двух печатных платах, установленных на промежуточной рамке. Расстояние между платами определяется высотой электрорадиоэлементов. Для подключению к термометру термодатчиков и элементов внешней схемы применяется колодка с контактами-зажимами винтового типа. На верхней, лицевой части прибора находится светодиодный индикатор температуры, светодиод, сигнализирующий срабатывание реле и кнопка переключения показаний «сухого» и «влажного» датчика.

3.2 Разработка печатной платы

К печатной плате предъявляют требования:

- по внешнему виду;

- электрическим параметрам;

- устойчивости при технологических, климатических и механических воздействиях;

- надежности. Особенно важным является требования к надёжности.

1) По внешнему виду проводящий рисунок должен быть чётким, без рваных краёв, вздутий, отслоений, разрывов, протравок, тёмных пятен, загрязнений и окислов. На поверхности проводящего рисунка не должно быть технологических повреждений и посторонних включений. Сквозные отверстия должны быть чистыми и свободными от включения любого рода. Расстояния между элементами проводящего рисунка и краем платы не должно быть менее 0,3 мм. Металлическое покрытие на элементах проводящего рисунка должно иметь гладкую глянцевую поверхность. Покрытие должно быть сплошным, без трещин, пор, крупнозернистости.

Требования электрических параметров печатного монтажа должны обеспечивать правильность монтажных соединений (соответствие цепей технической документации, целостность электрических соединений, отсутствие коротких замыканий).

Требования к устойчивости при технологических, климатических и механических воздействиях. Контактные площадки должны обладать паяемостью и способностью равномерно смачиваться припоем при воздействии его на плату в течение 3 с. Печатная плата должна быть устойчива к перепайке, и выдерживать не менее двух циклов перепаек на контактных площадках. Прочность сцепления печатных проводников и контактных площадок с основанием должна обеспечиваться соответствием материала требованиям ТУ и стандартов на фольгинированые диэлектрики.

Печатная плата должна соответствовать требованиям ТУ в процессе и после воздействия на них климатических факторов.

Требования к надёжности. Печатная плата должна сохранять конструкцию, внешний вид и электрические параметры в пределах нормы, а также соответствовать техническим условиям на изделие в рабочем режиме в течение гарантированного срока службы. Надёжность печатных схем влияет на надёжность РЭА. Она проверяется в составе РЭА и определяется минимальным значением вероятностью безотказной работы. Отказом считается полная или частичная утрата работоспособности печатной платы, нарушение печатного монтажа или отклонение любого параметра печатной платы от нормы.

Основными наиболее часто употребляемыми материалами печатных

плат являются гетинакс и стеклотекстолит. Проведём сравнительный анализ этих материалов.

Гетинакс значительно дешевле стеклотекстолита. Гетинакс также легче обрабатывается, что способствует повышению технологичности платы.

По электроизоляционным свойствам гетинакс уступает стеклотекстолиту. Тангенс угла диэлектрических потерь у гетинакса 0.06, у стеклотекстолита 0.03. Гетинакс также уступает и по механической прочности и жесткости, что приводит к увеличению требуемой толщины платы. Гетинакс более подвержен воздействиям химических реактивов при химическом методе изготовления печатной платы. Это еще больше ухудшает его диэлектрические свойства

Прочность сцепления проводящего покрытия с гетинаксовом основанием невысокая и резко падает при повышении температуры. Это затрудняет производство плат высоких классов точности на гетинаксовом основании, а также практически исключает возможность замены элементов из-за отслаивания контактных площадок. При изготовлении двухсторонних печатных плат на гетинаксовом основании, практически невозможно выполнить качественную металлизацию отверстий.

Рассмотренные недостатки делают гетинакс практически непригодным для изготовления печатной платы ЭИРТ. Поэтому выбираем в качестве материала печатной платы стеклотекстолит марки СФ-2Н-50 ТУ16.503.27-86.

Таблица 3.1. Таблица основных характеристик гетинакса и стеклотекстолита

Материал

Плотность

Рабочая

температура С

Удельное

сопротивление

Гетинакс

ГФ1-50

ГОСТ 10316-78

1,4

78

-60 +105

Стеклотекстолит

СФ-2Н-50

ТУ16.503.27-86

1,5

294

-60 +105

Для данного изделия достаточно использовать одностороннюю печатную плату.

2) Метод изготовления П.П. существенно влияет на схемо-конструкторские и эксплутационно-экономические параметры. Для получения проводящего рисунка П.П. выбираем химический метод производства печатных плат из фольгинированых диэлектриков. Достоинствам химического метода являются: доступность механизации и автоматизации, возможность получения высокого качества печатных плат, которые обладают высокой агдезией печатных проводников к диэлектрическому основанию.

Способ формирования изображения рисунка печатной платы - фотографический, достигается с помощью фотошаблонов методом контактной печати.

При химическом методе, основанном на травлении фольгинированого диэлектрика, отверстия не металлизируются. Этот метод простой и обеспечивает высокую разрешающую способность и плотность монтажа.

В избежания отслаивания контактных площадок при действии механических нагрузках при химическом методе изготовления все элементы должны быть установлены вплотную к плате без зазора.

3) Конфигурация и габаритные размеры П.П. будут зависеть от габаритных размеров разрабатываемого изделия, электрической схемы, применяемых навесных элементов, эксплутационных требований, предъявляемых к изделию, технико-экономических показателей. Форма печатной платы - прямоугольная.

Навесные элементы будут размещены с учётом электрических и паразитных связей между навесными элементами; необходимо также равномерно распределить массу навесных элементов по поверхности платы. Для удобства монтажа однотипные ЭРЭ будем размещать группами.

Установочные размеры и варианты установки навесных элементов будут выбираться в соответствии с действующими стандартами на установку навесных элементов.

Проведём трассировку соединений между собой контактов каждого из элементов. При трассировке учитываются следующие параметры: суммарная длина соединений (длинна соединений между элементами, должна быть минимальной), число узлов в соединениях, взаимные наводки трасс различных цепей. Трассировка соединений после компоновки элементов должна выполняться так, чтобы обеспечивались заданные электрические параметры изделия.

Наряду с обеспечением заданных электрических параметров изделия трассировка обеспечивает проведение наибольшего числа соединений при ограниченных размерах монтажного пространства.

Проводящий рисунок печатной платы, разработанный в результате трассировки соединений, будет удовлетворять следующим требованиям: соответствовать принципиальной электрической схемы, всем конструктивным, технологическим и электрическим требованиям; обеспечивать нормальную работу схемы при соответствующих условиях эксплуатации и удобства сборочно-монтажных и регулировочных работ.

Печатная плата по плотности проводящего рисунка будет относится ко второму классу. Зависимость расстояния между проводниками и размерами элементов проводящего рисунка приведена в табл. 3.2.

Таблица 3.2. Размеры элементов проводящего рисунка, мм

Параметры

Класс

2

Ширина проводника

0,25

Расстояние:

между проводниками, контактными площадками,

проводником и площадкой

0,25

от края просверленного отверстия до края контакт-

ной площадки данного отверстия

0,035

Страницы: 1, 2, 3, 4, 5, 6, 7