скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Электронный измеритель-регулятор температуры скачать рефераты

p align="left">Следующим расмотренным типом термометра будет бортовой термометр-вольтметр, принципиальная схема которого приведена на рис. 1.3.

Рис. 1.3. Принципиальная схема бортового-термометра вольтметра.

Основой прибора служат аналого-цифровой преобразователь (АЦП) DD1 и три микросхемных датчика температуры DА1-DА3. Датчики можно рассматривать как стабилитроны с малым дифференциальным сопротивлением (менее 1 Ом) и напряжением стабилизации, пропорциональным абсолютной температуре. Рабочий ток через них (около 1 мА) задан резистором R4. Точку измерения температуры (а значит, тот или иной датчик) выбирают переключателем SА1 (секция SА1.2).

Для того чтобы показания термометра были нулевыми при нулевом значении измеряемой температуры, на вход АЦП следует подать разность между напряжением на датчике и образцовым напряжением 2,732 В. Образцовое напряжение должно быть высокостабильным (температурный коэффициент напряжения источника, встроенного в микросхему КР572ПВ2А, слишком велик). Поэтому в приборе в качестве источника образцового напряжения использован микросхемный стабилизатор КР142ЕН19А (DА6) с весьма малой температурной зависимостью выходного напряжения.

Микросхема DА6 работает в режиме регулируемого прецизионного стабилитрона. Необходимое напряжение стабилизации 2,732В устанавливают подстроечным резистором R9, а ток стабилизации (около 6мА) задает резистор R13.

Измеряемой температуре 100 °С соответствует напряжение 1 В между входами АЦП +1Uвх и - Uвх. Для того, чтобы при этом на табло НG1-НG4 появилось показание «100,0», необходимо подать образцовое напряжение 1 В на входы +Uобр и - Uобр АЦП. Это напряжение снимают с движка подстроечного резистора R15.

Частота работы генератора АЦП выбрана из стандартного ряда - 50 кГц, ее задают элементы С12R18. Указанным параметрам соответствуют номиналы элементов интегратора R17 и C11 и емкость конденсатора C10 автокоррекции «нуля». Конденсатор С5 уменьшает влияние наводок на датчики, а С8 исключает паразитную генерацию внутреннего источника образцового напряжения АЦП (-2,9 В).

Индикатор НG1 указывает знак и первую цифру наибольшего значения измеряемой температуры - «единицу». Через горизонтальный элемент индикатора течет ток (определяемый резистором R19, из-за чего элемент постоянно высвечивает знак «минус». Полярность напряжения, подаваемого на входы Uвх АЦП, противоположна обычной, поэтому при плюсовой температуре на выходе g1 АЦП действует низкий логический уровень, включающий дополнительно два вертикальных элемента индикатора НG1, формируя знак «плюс». «Единица» включается на на индикаторе HG1, лишь когда измеряемая температура достигает 100 С и более.

Напряжение питания прибора в целом стабилизировано микросхемным стабилизатором DA4. Пятивольтное напряжение для питания индикаторов HG1-НG4 сформировано стабилизатором DА5. Значения напряжения на схеме указаны относительно верхнего по схеме плюсового проводника (подключаемого к плюсовому выводу аккумуляторной батареи через контакты секции SА1.1 переключателя и дроссель L1).

Для измерения напряжения аккумуляторной батареи служит делитель R5-R8. С резисторов R6 и R7 напряжение, равное 0,01 напряжения батареи, подано на вход АЦП во втором сверху по схеме положении переключателя SА1 (цифрами обозначены номера его контактов). Напряжению батареи 12В соответствуют напряжение 120 мВ на входе АЦП и показания табло «12,0». Если желательно иметь точность измерений до 10 мВ, делитель R5-R8 должен обеспечивать на резисторах R6 и R7 напряжение, равное 0,1 напряжения батареи, и, кроме того, необходима еще одна секция переключателя SА1 для управления положением десятичной запятой.

Ещё одним типом рассмотренных термометров будет цифровой термометр, принципиальная схема которого приведена на рис. 1.4.

Датчиком температуры описываемого прибора служит кремниевый диод. При этом используется линейная зависимость падения напряжения на нем от температуры при фиксированном прямом токе смещения. Температурный коэффициент напряжения (ТКН) для кремниевых диодов практически постоянен в диапазоне -60…+100С и составляет -2… - 2,5 мВ/С - в зависимости от типа диода и значения тока смещения. Как показали исследования, практически любой кремниевый диод или транзистор может быть использован как линейный температурный преобразователь в диапазоне от -55С до +125С

Основные технические характеристики термометра

Интервал измеряемой температуры, С…………………………… - 50…+120

Разрешающая способность, С………………………………………………. 0,1

Погрешность измерения, С

На краях рабочего интервала……………………………………… +0,7

В средней части рабочего интервала, не хуже……………………+-0,3

Диапазон измерения температуры окружающего воздуха, С…………0….50

Напряжение источника питания………………………………………………9

Потребляемый ток, мА, не более……………………………………………1,5

Рис. 1.4. Принципиальная схема цифрового термометра

Датчиком термометра, функцию которого выполняет диод VD1, питается от источника тока, выполненного на полевом транзисторе VT1. С анода датчика сигнал, линейно зависящий от измеряемой температуры, через фильтр помех R5C1 поступает на вывод 30 инвертирующего входа микросхемы DD1 (поскольку ТКН диодного датчика отрицателен). В качестве источника стабильного напряжения, питающего цепи, определяющие точность термометра, используется разность напряжений между выводами 1 и 32 DD1, которая поддерживается внутренним стабилизатором АЦП на уровне 2,8+-0,4В. Температурный коэффициент этой разности напряжений равен примерно 10-4К-1. Чтобы свести к минимуму влияние этого ТКН на процесс измерения, в прибор введен еще один источник тока - на транзисторе VТ2. Он питает подстроенные резисторы RЗ и R4, служащие для калибровки термометра.

Транзистор VТЗ обеспечивает индикацию десятичной точки во втором разряде ЖКИ НG1. Источником питания прибора может быть батарея «Корунд» или аккумуляторная батарея 7Д-0.125. Работоспособность термометра и все его параметры сохраняются при снижении напряжения источника питания до 6,8 В

Резисторы R1 и R2 лучше ваять типа С2-29В; подстроенные RЗ и R4 - СП5-2, остальные - МЛТ - 0,125. Конденсаторы СЗ и С4 - К71-5, К72-9, К73-16; С6 - оксидный К52-16; остальные могут быть любого типа.

Перед установкой транзисторов VT1 и VТ2 желательно найти их термостабильные рабочие точки. Для этого транзистор вместе с резистором между затвором и стоком нужно подключить через миллиамперметр к источнику стабилизированного напряжения 2,8 8 и изменить температуру транзистора, касаясь его корпуса сначала горячим, затем холодным металлическим предметом. Подбором резистора добиться наименьшего изменения тока стока в диапазоне температуры 050 °С. Номиналы подбираемых резисторов R1 и R2 могут значительно отличаться от указанных на схеме. Ток стока транзисторов VT1 и VT2 должен быть в пределах 200..300 мкА.

В домашних условиях настраивать термометр удобнее всего по температуре таяния льда и кипения воды. Предварительно движок резистора RЗ следует установить в положение, соответствующее напряжению на нем 0,570,6 В, а движок резистора R4 - 0,210,23 В. Измеряя датчиком температуру воды тающего льда, установите резистором RЗ нулевые показания индикатора прибора. Затем, поместив датчик в кипящую воду, резистором R4 устанавливают показания, равные температуре кипения воды при данном атмосферном давлении. Такую процедуру настройки следует повторить несколько раз.

Если термометр не предполагается использовать в условиях значительных колебаний температуры окружающего воздуха, то без особого ущерба для точности измерений можно исключить источник тока VТ2R2. А если и интервал измеряемых температур будет значительно уже, чем указанный в технических характеристиках, то можно исключить и источник тока VТ1R1. При замене их резисторами сопротивлением 6,2 кОм режим работы прибора (токи через датчик VD1 и резисторы RЗ, R4) практически не изменится. Такое упрощение термометра вполне приемлемо для измерения, например, температуры воздуха внутри жилого помещения. Можно также значительно (в 10 15 раз) увеличить сопротивление этих резисторов, но тогда придется пропорционально увеличить и сопротивление подстроенных резисторов RЗ, R4.

Экспериментируя с термометром, не следует забывать, что неточность в выборе режимов транзисторов VТ1, VТ2 ухудшает его стабильность работы значительно больше, чем при замене их резисторами.

К сожалению, в случае замены датчика, например, из-за выхода его из строя, неизбежна повторная настройка термометра. Объясняется это значительным разбросом параметров р-п переходов полупроводниковых диодов, Некоторые зарубежные фирмы выпускают диоды и транзисторы специально для использования в качестве датчика температуры. У них хорошая повторяемость параметров и нормированная нелинейность вольт-градусной характеристики. Однако можно заранее подобрать несколько диодов с близкими характеристиками и проверить их на работающем термометре.

Работоспособность описанного термометра в области отрицательных температур окружающего воздуха ограничена только особенностями используемого ЖКИ. Вариант его, собранный на микросхеме КР572ПВ2 и люминесцентных индикаторах, нормально функционировал при температуре -20 °С.

Все рассмотренные виды термометров имеют свои недостатки. Например, в универсальном электронном термометре датчиком служит термопара и несмотря на её большой температурный диапазон, необходимую точность она не обеспечивает. Простой цифровой, цифровой термометры и бортовой термометр-вольтметр хоть и обеспечивают достаточную точность, но в качестве датчика температуры у них применён диод, недостатком которого является большое удельное сопротивление. Поэтому темой дипломного проекта является электронный измеритель-регулятор температуры, датчиком температуры у которого является микросхема К1019ЕМ1, которая имеет линейную зависимость выходного напряжения от температуры.

1.2 Блок-схема ЭИРТ

Блок-схема электронного термометра приведена на рис. 1.5. и фактически состоит из 3 основных составляющих: датчика, непосредственно схемы термометра и естественно схемы питания. Так как прибор расчитан и на аварийное управление влажностью и температурой, то исходя из этого применено два датчика: сухой, который находится в обычной среде и влажный, который находится во влажной среде. Сигнал с выхода одного из датчиков поступает на цифровой вольтметр, который предназначен для преобразования напряжения аналогового сигнала в цифровую форму. Помимо сигнала с датчика на цифровой вольтметр поступает образцовое напряжение с формирователя опорных сигналов. Для отображения результирующего сигнала, напряжение с выхода цифрового вольтметра поступает на четырёхразрядные жидкокристалические цифровые индикаторы. Помимо контроля за температурой электронный термометр ещё и управляет ею. Для этого напряжение подаётся на пороговое устройство, где оно сравнивается с напряжением, соответствующим температуре 38,1С и если оно будет превышать его, то пороговое устройство срабатывает и падаёт сигнал на управляющий элемент, который отключает или включает нагревательное устройство.

2. Разработка принципиальной ЭИРТ

2.1 Обоснование выбора датчиков температуры

Для получения информации об окружающей температуре необходимым звеном любого термометра является датчик температуры окружающей среды. В настоящее время известно значительное количество их видов, каждый из которых позволяет судить о состоянии регулируемого процесса или объекта. Относящиеся к их числу терморезисторы и другие элементы в той или иной мере удовлетворяют требованиям по точности, стабильности, воспроизводимости характеристик, надёжности и т.д. Однако каждому из них присущи недостатки. Например, в качестве датчика температуры можно использовать самые различные комплектующие материалы. Одним из них является медь, у которой удельное сопротивление изменяется прямо пропорционально температуре. Но несмотря на это достоинство, надёжность таких датчиков недостаточна. Применение же термопары, ещё одной разновидности датчиков, технологически сложно. Часто для построения датчика температуры используют свойство р-п-перехода, заключающееся в том, что падение напряжения на нем линейно зависит от его температуры. ТКН р-п-перехода отрицателен и имеет типовое значение 2 мВ/°С. Но и у него есть существенный недостаток-большое его дифференциальное сопротивление (2530 Ом при токе 1 мА). Поэтому проанализировав все типы датчиков, а также учитывая диапазон заданных температур я пришёл к выводу, что оптимальным датчиком температуры является микросхема К1019ЕМ1.

Эти микросхемы представляют собой термодатчики с линейной зависимостью выходного напряжения от температуры. Они предназначены для работы в устройствах контроля, измерения и регулирования температуры, Микросхемы оформлены в металлостеклянном корпусе КГ-1-9 о гибкими проволочными лужеными выводами (рис. 2.1); масса прибора - не более 1,5 г.

Страницы: 1, 2, 3, 4, 5, 6, 7