скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Дослідження математичної моделі WiMax та розрахунок покриття на її основ скачать рефераты

p align="left">Здатність підтримки тієї або іншої модуляції залежить від багатьох параметрів зв'язку, і насамперед, від енергетичних параметрів системи.

Мал. 3.2. Зони обслуговування мережі WIMAX.

Як видно з діаграми сузір'я модуляції QAM, чим вище тип модуляції, тим менше по амплітуді і фазі відрізняються вектори сусідніх значень символу, що передається. Тим самим, для безпомилкового прийому символу (прийому з деяким допустимим рівнем помилок) потрібний потужніший сигнал, а точніше, вище відношення потужності сигналу до шуму.

Кожен тип модуляції для передачі символу з рівнем помилок, що не перевищує певного максимального значення, вимагає певного мінімального значення відношення рівня сигналу до шуму Signal/noise Ratio (SNR або S/n). Окрім відношення SNR часто використовується практично ідентичне поняття Сnr Carrier/noise Ratio або C/n.

Кожен тип модуляції характеризується необхідним рівнем відношення сигналу до шуму SNR, необхідного для передачі біт інформації з помилками Bit Error Rate (BER) не вище за деякий допустимий рівень. На мал. 3.3 представлені залежності відношення SNR від бітових помилок для кожного типу модуляції.

Мал. 3.3. Залежність відношення сигнал/шум від бітової помилки.

Стандарт IEEE 802.16-2004 визначає для підтримки модуляції 64 QAM на рівні помилок не вище Ber=10e-6 з урахуванням корекції помилок Fec=3/4 значення відношення сигнал/шум для кожної несучої OFDM сигналу SNR рівне 24.4 db. Пізніший стандарт IEEE 802.16e-2005 задає для фіксованих і мобільних мереж WIMAX жорсткіше значення Snr=21 db для 64QAM3/4 з Ber=10e-6.

3.2 Залежність величина радіусу комірки від чутливості приймача.

Розрахунок радіусу комірки для різних видів модуляції є дещо ідеалізований. Для досягнення таких результатів при практичній побудові необхідно оцінити додаткові енергетичні характеристики системи, такі як чутливість приймача та коефіцієнт системного підсилення. Так, для отримання необхідного рівня SNR(а значить і відповідного BER) потужність сигналу на вході приймача системи має бути вище відповідного порогового рівня чутливості.

Для прикладу, розглянемо модуляцію 64QAM.

Пороговий рівень чутливості Rx приймача для систем OFDM для модуляції 64QAM3/4 визначається як:

Rx 64QAM3/4 = No + Snr64qam3/4 + 10 Log (Bwef) + Nf + Implementation Loss, dbw; [3]

де Snr64qam 3/4 - необхідний рівень відношення SNR для модуляції 64QAM3/4=21 db;

No = 10 log (kto) = -144 db (W/mhz) - Receiver Noise Floor спектральна густина потужності теплового шуму приймача, kto - закон рівномірного розподілу;

Nf - значення власного шуму приймача (noise figure) рівне - 8 db (IEEE 802.16e-2005).

Implementation loss рівне 5 db. Ця величина відображає так звані втрати реалізації, що враховують неідеальність приймача, фазовий шум і ін.

Bwef - ефективна ширина спектру групового сигналу OFDM. Ця величина пропорційна кількості піднесучих в спектрі групового сигналу. За рахунок наявності захисного інтервалу між під несучими ефективна ширина спектру OFDM сигналу декілька менше смуги пропускання приймача (ширина каналу). Для каналу шириною 10 Мгц без subchannelisation (використовуються всі піднесучі) Bwef = 9.15 Мгц, 10 Log (Bwef) = 9.6 Мгц.

ОтжеRx 64QAM3/4 = -101 + Snr64qam3/4 +10 Log (Bwef), dbm; [4]

Тим самим, необхідний пороговий рівень чутливості системи WIMAX стандарту IEEE 802.16e-2005 при implementation loss 5 db з шириною каналу 10 Мгц складає 70.4 dbm. За стандартом IEEE 802.16-2004 ця величина раніше складала 68 dbm. Відзначимо, що стандарт IEEE 802.16e-2005 описує вимоги не тільки до мобільних OFDMA мереж WIMAX, а також містить нові жорсткіші вимоги (так званий Rev Cor1) до фіксованих OFDM мереж WIMAX.

Для підтримки деякої модуляції рівень OFDM сигналу на вході приймача Receive Strength Signal Level (RSSL) в смузі пропускання каналу BW повинен на величину SNR відношення сигнал/шум перевищувати рівень теплового шуму з урахуванням внутрішнього шуму приймача і втрат реалізації.

Таким чином, для підтримки модуляції 64QAM3/4 рівень OFDM сигналу на вході приймача Receive Strength Signal Level (RSSL) має бути для систем WIMAX згідно стандарту IEEE 802.16e-2005 не нижче за рівень чутливості 70.4 db (Snr=21 db) в смузі ширини каналу Bw=10 Мгц. Реальні системи WIMAX зазвичай мають вищий в порівнянні з вимогами стандарту рівень чутливості, оскільки значення втрат реалізації implementation loss 5 db в стандарті дещо завищене. Наприклад, чутливість системи Airspan MICROMAX SOC 5 Ghz (стандарт IEEE 802.16e-2005) в каналі шириною 10 Мгц для 64QAM3/4 складає -77 dbm (при Snr=21 dbm), що відповідає практично ідеальному приймачу (Implementation loss близько до нуля) з низьким рівнем власних шумів noise figure менше 6 db. Чутливість системи Axxcelera AB-MAX 5 Ghz (стандарт IEEE 802.16-2004) в каналі шириною 10 Мгц для 64QAM3/4 складає 72.7 dbm (при Snr=21 dbm). Чутливість системи UNIDATA Maxbridge CPE 5 Ghz (стандарт IEEE 802.16e-2005) складає 70.5 dbm (при Snr=20 dbm і для значно нижчого рівня помилок Ber=10-11, що відповідає чутливості для Ber=10-6 порядку -74 dbm).

В принципі, система може підтримувати модуляцію 64QAM3/4 і при значно (на декілька db) нижчих значеннях сигналу, але при цьому рівень бітової помилки буде гірше значення Ber=10е-6. Відповідно, розрахувавши чутливість приймача, можна оцінити певний коефіцієнт погіршення чи покращення якості в каналі зв'язку, а значить - провести зміни розміру комірки.

3.3 Залежність величина радіусу комірки від системного підсилення

Кожна система характеризується параметром, відомим як системне підсилення System Gain, що визначає максимальний радіус комірки. Системне посилення визначається як:

System Gain = Tx - Rx; [5]

де Tx - вихідна потужність передавача системи; Rx - чутливість приймача системи.

Тим самим, системи WIMAX мають на 5-10 db вище системне посилення (при рівності значень Tx вихідної потужності передавача).

Для розрахунку радіусу комірки використовують рівняння бюджету каналу зв'язку Link Budget. Як відомо, збільшення Link Budget на 6 і 12 db збільшує дальність зв'язку, відповідно, LOS і NLOS в два рази. Дане рівняння зв'язує рівень потужності на вході приймача RSSLRX і вихідну потужності передавача Tx, що знаходяться один від одного на відстані D:

RSSLRX = TX + GTX + GRX - LRX -ltx - LD, dbm; [6]

де TX - вихідна потужність передавача, dbm;

GTX - коефіцієнт підсилення антени передавача, dbi;

GRX - коефіцієнт підсилення антени приймача, dbi;

LRX, LTX - СВЧ втрати потужності сигналу, відповідно, в приймачі і передавачі, в кабелі, роз'ємах і др.;

LD - втрати в db на шляху розповсюдження радіохвиль на дальність D км.

Наприклад, в умовах LOS втрати потужності сигналу у вільному просторі розраховуються як

LD = 20 log (4рd / л), db; [7]

де л - довжина хвилі.

В умовах NLOS втрати розраховуються по складніших формулах.

Оскільки система підтримує зв'язок на модуляції 64QAM3/4, якщо рівень сигналу на вході приймача RSSLRX буде вищий за рівень чутливості RX, то згідно виразу Link Budget (7) для цього необхідно, щоб

RSSLRX - FM = TX + GTX + GRX - LRX - LTX - LD - FM >= RX, dbm; [8]

LD =< TX - RX + GTX + GRX - LRX - LTX - FM; [9]

де FM - запас по завмираннях fade margin.

У реальних системах унаслідок завмирання сигналу із-за багатопроменевого розповсюдження радіохвиль зазвичай потрібно, щоб рівень сигналу RSSL перевищував рівень чутливості сигналу на деяку величину - запас по завмираннях Fade Margin (FM). У системах WIMAX для підтримки модуляції 64QAM3/4 сигналу OFDM достатньо запасу fade margin рівне 1 db.

Таким чином, для роботи на дальності D км., втрати розповсюдження радіохвиль мають бути менше величини:

LD =< System Gain + Підсилення антен - СВЧ втрати - Fade Margin

Таким чином, чим вище System Gain системне посилення і менший необхідний запас по завмираннях Fade Margin, тим більший бюджет лінка має система і відповідно, тим більша дальність зв'язку.

Як було відмічено, системи WIMAX мають на 5-10 db вище System Gain в порівнянні з системами Prewimax. Крім того, OFDM сигнал prewimax системи має значно менше число піднесучих. Також захисний інтервал між піднесучими не розрахований на обробку багатопроменевого розповсюдження сигналів на високих дальностях зв'язку (відмінних від офісних умов). Це приводить до низької ефективності обробки завмирань системами prewimax і, як наслідок, необхідності великих запасів по завмираннях fade margin, рівними 6 db в умовах LOS (за наявності зони Френеля) і 12 db за наявності оптичної видимості (near LOS, повна або часткова відсутність зони Френеля).

Таким чином, системи WIMAX мають бюджет лінка Link Budget на 10-20 db більше, ніж системи prewimax.

У таблиці представлені порівняльні дані по енергетичних параметрах систем WIMAX і prewimax.

Система

Rx, чутливість, 64QAM3/4, BW=10 МГц

Tx power

Fade Margin

Необхідний SNR, 64QAM3/4, BER=10E-6

System gain

Величина запасу Link Budget

WiMAX, IEEE 802.16, 5 ГГц

-71

20

1

21

91

17

Airspan MicroMAX SOC IEEE 802.16e-2005, 5 ГГц

-77.4

22

1

21

99

25

preWiMAX IEEE 802.11a, 5 ГГц

-65

20

12

21

85

-

Таблиця 1. Енергетичні параметри систем WIMAX і prewimax

Представляє інтерес також порівняльний аналіз дальності-швидкості передачі даних WIMAX систем в діапазоні частот 5 Ггц з системами BWA діапазону частот 2.4 Ггц. Втрати потужності сигналу при розповсюдженні радіохвиль в умовах LOS на перших 50 км. в діапазоні частот 2.4 Ггц на 7 db менше аналогічних втрат в діапазоні частот 5 Ггц. Тим самим, збільшення Link Budget на 7 db могло б дати збільшення дальності зв'язку в два рази. Проте такої переваги системи BWA 2.4 Ггц не мають.

Більшість систем BWA в діапазоні 2.4 Ггц працює на модуляції BPSK і QPSK з однією піднесучою (стандарт Ieee802.11b). Системи 2.4 Ггц стандарту IEEE 802.11g, що підтримують модуляцію QAM і OFDM з множиною піднесучих, в цілях зворотної сумісності з системами IEEE 802.11b на модуляціях BPSK і QPSK використовують сигнал з однією піднесучою. Cистеми з однією піднесучою для стійкої роботи вимагають дуже високого значення величини Fade Margin. Наприклад, для підтримки модуляції BPSK для будь-яких систем теоретично достатньо Snr=3 db. Системи WIMAX здатні стійко працювати на даній модуляції при Snr=4 db (Fade Margin=1 db). Для системи з однією піднесучою модуляції BPSK (стандарт IEEE 802.11b/g) необхідний рівень SNR для умов LOS складає 19 db (fade margin 15 db). В умовах оптичної видимості (Near LOS, часткове перекриття зони Френеля) вимоги до SNR для BWA систем в 2.4 Ггц досягають 25-30 db (fade margin 20 db). Фактично вищі значення fade margin для систем 2.4 Ггц з однією піднесучою позбавляють ці системи всіх переваг використання нижчих частот. В результаті системи BWA 2.4 ГГЦ мають нижчі значення Link Budget (на величину 15-25 db), що приводить до істотно нижчих дальностей зв'язку. Фактично там, де система BWA 2.4 Ггц здатна працювати на модуляції BPSK або QPSK в каналі шириною 20 Мгц з реальною швидкістю передачі даних до 3-4 Mbps і з максимальним радіусом обслуговування базової станції (без використання підсилювачів) до 8-10 км., система WIMAX здатна працювати на максимальній модуляції 64QAM3/4 в каналі шириною 10 МГЦ cо швидкістю передачі даних в 25 Mbps. Більш того, система WIMAX здатна підтримувати дану швидкість на дальності до 25 км.

Системи WIMAX фіксованого доступу мають ще одне дуже важливе технологічне нововедення, зв'язане із застосуванням OFDM радіосигналу, ніколи раніше до появи мереж WIMAX що не використалося. Мова йде про так звані технології sub-channelization, коли абонентські пристрої можуть використовувати для каналу зв'язки Uplink не всі доступні в каналі під несучі, а тільки деяку частину з них. Зокрема, мінімальна кількість піднесучих uplink каналу зв'язку складає одну шістнадцяту частину повного набору піднесучих. При застосуванні sub-channelization використовувана частина піднесучих забезпечує потрібну для абонента швидкість передачі даних UL висхідного каналу, вимоги за швидкістю до якої в типових застосуваннях зазвичай нижче чим для DL низхідного каналу. При цьому ширина UL каналу стає значно менше ширини каналу з повним набором піднесучих, що збільшує енергетику UL каналу максимально на 12 db.

Для підвищення дальності зв'язку необхідно підвищувати енергетику як з боку базової станції так і з боку абонента. Підвищення вихідної потужності базової станції не є серйозною проблемою, а ось збільшення вихідної потужності абонентського терміналу має обмеження. Тому застосування механізму sub-channelization, що підвищує енергетику абонентського терміналу, є одним з могутніх інструментів, що також дозволяють значно збільшувати дальність зв'язку систем WIMAX.

3.4 Вплив інтерференції на радіус комірки системи WiMax

На територіях з міською забудовою крім енергетичних параметрів системи при розрахунку покриття починають значно домінувати явища інтерференції, наявності зон Френеля та дифузійного розсіювання.

Тобто, у реальних системах окрім теплового шуму і внутрішнього шуму приймача присутня інтерференція. Тому SNR оцінюється як С/N+I, де C - потужність сигналу, N - потужність теплового шуму, I - потужність сигналу інтерференції. Вплив інтерференції приводить до деградації рівня чутливості приймача. Чим вище рівень інтерференції, тим на значнішу величину сигнал на вході приймача RSSL повинен перевищувати рівень чутливості для підтримки відповідної модуляції.

Значення показника Snr=с/n+i (зазвичай позначається коротко як C/i) постійно вимірюється в процесі роботи як на базовій станції, так і на кожному абонентському терміналі WIMAX, з метою динамічного призначення найбільш відповідної модуляції для кожного передаваного пакету даних. Цей вимірюваний показник позначається SINR (Signal to interference plus noise ratio) або CINR (Carrier to interference plus noise ratio).

Експериментально встановлено, що якщо рівень інтерференції знаходиться нижчим за рівень теплового шуму Receiver Noise Floor на величину в 6 db, то ця інтерференція не робить впливу на приймач системи. Точніше, при I = No - 6 dbm рівень зниження (деградації) рівня чутливості приймача не перевищує 1 db.

Рівень теплового шуму з урахуванням внутрішнього шуму приймача складає N = 10log(kto)+ Nf = -136 db (W/mhz). Тому рівень інтерференції I в каналі шириною 10 Мгц, чутливості приймача, що не приводить до істотної деградації, рівний

I = -136 + 30 + 10 Log(10) - 6 = -102 dbm

У каналі шириною 5 Мгц рівень інтерференції, що не приводить до істотної деградації чутливості приймача, рівний -105 dbm.

При перевищенні рівня потужності інтерференції порогових величин деградація рівня чутливості збільшується більш ніж на 1 db і інтерференції може впливати на роботу системи. Ступінь негативного впливу залежить від типу сигналу інтерференції (перешкоди). При оцінці чутливості приймача як шум розглядається шум Гауса або “білий шум”. Реальний сигнал перешкоди по своїй структурі, природно, може відрізнятися від „білого шуму” і його вплив на роботу системи може бути як сильніший, так і слабкіший за вплив білого шуму. Так наприклад, вузькосмугова перешкода може взагалі не впливати на широкосмуговий сигнал OFDM. Точна теоретична оцінка впливу різних типів перешкод на роботу приймача системи є достатньо складним завданням. Більш менш точно оцінити взаємний вплив інтерференції можливо для однотипного устаткування при аналізі електромагнітної сумісності. На практиці для оцінки можливості роботи систем в умовах інтерференції різного типу зазвичай оперують граничними значення CINR.

WIMAX є системою з автоматичним регулюванням потужності Aтpc. На базових станціях задається максимально можливий рівень вхідного сигналу RSSL. Для 5 Ггц систем з шириною каналу 5 або 10 Мгц даний рівень зазвичай встановлюється рівним 65-70 dbm. При мінімально достатньому рівні сигналу на вході приймача RSSL в 65-70 dbm (близькому до рівня чутливості з урахуванням fade margin) і при відношенні сигнал/шум + інтерференція С/n+i >= 21 + 6 = 27 db на модуляції 64QAM3/4 досягається деградація рівня чутливості приймача не вище 1 db для BER = 10E-6. Таким чином, зміряне в процесі роботи WIMAX значення CINR >= 27 db при мінімально достатньому рівні RSSL гарантує, що інтерференції знаходиться нижчим за рівень теплового шуму приймача на величину не менше 6 db і незалежно від типу сигналу інтерференції практично не робить впливу на роботу системи.

При роботі в умовах сильної інтерференції або по інших причинах максимальний рівень вхідного сигналу на базовій станції може бути підвищений до 65-60 dbm. В цьому випадку, при підвищенні рівня сигналу на вході приймача, вимоги до рівня CINR для підтримки модуляції 64QAM3/4 декілька знижуються аж до мінімально необхідного рівня 21 db.

Тим самим, в умовах присутності інтерференції для підтримки, наприклад, модуляції 64QAM3/4 абсолютно недостатньо мати рівень сигналу RSSL, що перевищує рівень чутливості приймача для 64QAM3/4 на величину fade margin. Тобто, тільки за значенням рівня сигналу RSSL за наявності інтерференції неможливо визначити який тип модуляції може підтримуватися системою. Наприклад, рівень вхідного сигналу RSSL може бути рівним - 65 dbm, що в умовах відсутності інтерференції більш ніж достатньо для підтримки модуляції 64QAM3/4 при будь-якій ширині каналу. Проте за наявності інтерференції реально отримуваний CINR може бути менше величини 20 db, що не дозволяє підтримувати модуляцію 64QAM3/4 з рівнем помилок Ber=10e-6.

Якщо зміряне системою значення CINR перевищує значення 21 db, то це означає, що сигнал RSSL перевищує рівень порогової чутливості для 64QAM3/4. Якщо зміряне системою значення CINR перевищує значення 27db, то по колишньому сигнал RSSL перевищує рівень порогової чутливості для 64QAM3/4, але при цьому рівень інтерференції не перевищує допустимого рівня і не впливає на приймач системи.

Таким чином, для підтримки системою WIMAX найвищої символьної швидкості на модуляції 64QAM3/4 необхідно і достатньо, щоб відношення сигнал/шум + інтерференція CINR перевищувала значення 21-27 db на величину fade margin.

Тим самим, об'єктивним показником можливості підтримки тієї або іншої модуляції є вимірюване системою WIMAX відношення CINR. Саме по значеннях CINR система WIMAX встановлює робочу модуляцію сигналу, що забезпечує стійку роботу каналу зв'язку з рівнем бітової помилки не вище Ber=10e-6.

Зазвичай базову станцію WIMAX настроюють на роботу в умовах відсутності або низького рівня інтерференції, задаючи максимальний рівень потужності вхідного сигналу близькому до значення чутливості Rx плюс fade margin в 1-3 db, що для систем з шириною каналу 10 Мгц складає порядку -70 dbm. Cістема WIMAX за відсутності інтерференції здатна працювати на модуляції 64QAM3/4 при CINR >= 21 db. Запас по завмираннях fade margin для CINR зазвичай вибирається 1 db або для стабільнішої роботи 3 db. Поріг перемикання на нижчу модуляцію, наприклад, 64QAM2/3 також може складати 1 db. Верхній і нижній пороги перемикання модуляцій утворюють так званий гістерезис. Тим самим, система WIMAX може бути стандартно настроєна таким чином, що досягши Cinr=24 db включається модуляція 64QAM3/4, яка міняється на 64QAM2/3 при зниженні рівня CINR нижче 20 db. Якщо в процесі роботи системи Wimaх із стандартними налаштуваннями поточне вимірюване значення CINR рівне 27 db і вище, то це свідчить про те, що навіть якщо інтерференція і присутній, то її рівень не впливає на роботу системи на модуляції 64QAM3/4. Якщо вимірюваний рівень CINR менше 20 db при RSSL = -70 dbm, то це свідчить про наявність сильної інтерференції. В цьому випадку, якщо понизити рівень потужності інтерференції неможливо або важко, то на базовій станції може бути підвищений максимальний рівень вхідного сигналу до 65 і навіть 60 dbm. При цьому вимоги до CINR для 64QAM3/4 знижуються до 21 db і для стійкої роботи системи гістерезис підтримки модуляції 64QAM3/4 також має бути відповідним чином змінений.

Важливою відмінністю систем WIMAX від prewimax є спосіб вимірювання SNR, системою, що реалізовується, в процесі її роботи. Система WIMAX вимірює SNR шляхом обчислення рівня CINR на основі підрахунку кількості прийнятих помилкових біт для кожного пакету даних і на основі аналізу отриманого рівня CINR вибирає тип підтримуваної модуляції. Системи prewimax взагалі можуть не проводити оцінку SNR, а вибір типу модуляції проводити на основі аналізу рівня вхідного сигналу RSSL (або деякої абстрактної величини RSSI - Receive Strength Signal Indicator). Також може проводитися оцінка рівня шуму (інтерференції) на основі вимірювання рівня потужності сигналів, не розпізнаних демодулятором приймача, і даватися вельми приблизна оцінка результуючого SNR. Тим самим для prewimax систем можлива ситуація, коли індикатори показує хороший рівень вхідного сигналу RSSI і SNR, але в радіоканалі унаслідок дії перешкод є високий рівень помилок. Така ситуація в системах WIMAX принципово неможлива. Система WIMAX завжди адекватно реагує на високий рівень інтерференції шляхом пониження рівня модуляції на основі аналізу значення CINR, що набуває, і не допускає збільшення помилок в радіоканалі зверху необхідної величини.

При оцінці дальності зв'язку в умовах інтерференції вираз (6) розрахунку потужності вхідного сигналу RSSL трансформується у вираз розрахунку необхідного рівня SNR = С/n + I або С/i відношення сигнал/шум + інтерференція. Слід зазначити, що вплив інтерференції будь-якого типу на OFDM сигнал з невеликою кількістю піднесучих, а також на сигнал з однією піднесучою, в загальному випадку, носить більш деструктивний характер, ніж на сигнал з великою кількістю піднесучих. Це виражається в тому, що рівень SNR, потрібний для роботи, наприклад, 64QAM3/4 в умовах сильної інтерференції для сигналу з меншою кількістю піднесучих (prewimax) може бути значно більше необхідного рівня SNR з великою кількістю піднесучих (WIMAX). Це дає додатковий запас по енергетиці сигналу системам WIMAX при роботі в умовах інтерференції і збільшує максимальну дальність зв'язку.

3.5 Оцінка впливу зон Френеля на якість сигналу в межах траси WiMax

Рис.3.4. Побудова 1 зони Френеля.

Радіохвиля в процесі розповсюдження в просторі займає об'єм у вигляді еліпсоїда обертання з максимальним радіусом в середині прольоту, який називають зоною Френеля. Природні (земля, горби, дерева) і штучні (будівлі, стовпи) перешкоди, що потрапляють в цей простір послаблюють сигнал.

Це надзвичайно важливо особливо для стандартів 802.16 та 802.16а, що працюють лише при наявності прямої видимості між передаючою та приймаючою антеною.

Радіус 1-ї зони Френеля бути розрахований за допомогою наступної формули:

Тут n=1 - номер зони Френеля, R1 і R2 - відстань від передаючої та приймаючої антен до місця обчислень радіуса r і r - радіус зони Френеля в метрах.

Звичайне блокування 20% зони Френеля вносить незначне загасання в канал. Понад 40% - загасання сигналу буде вже значним, тому слід уникати попадання перешкод на шляху розповсюдження.

Для стандартів WiMax, що працюють і в умовах відсутності прямої видимості максимальна дальність роботи базової станції на частоті 2,5ГГц в закритій зоні Френеля не перевищує 3км.

Для прикладу, розглянемо зміну радіусу 1 зони Френеля на середині відстані між приймачем і передавачем при зміні відстані чи частоти несучої:

Рис.3.5. Залежність радіусу зони Френеля від несучої частоти.

Рис.3.5. Залежність радіусу зони Френеля від відстані між абонентами.

4. Проектування покриття комірки на основі імітаційної моделі

Для прикладу, розглянемо декілька варіантів розрахунку радіусу комірки в залежності від параметрів системи WiMax на основі математичної імітаційної моделі. В якості початкових умов було вибрано систему із передачею сигналу в смузі 1.25МГц на частоті 2ГГц з використанням 200 піднесучих.

Канал зв'язку був спроектований на основі наступної блок-схеми:

Рис.4.1. Модель каналу зв'язку

В каналі зв'язку задані наступні початкові параметри:

SNR = 30дБ;

Дальність між передаючою і приймаючою станціями - 1Км;

Чутливість приймача - -80дБп;

Температура - 290К;

Фазовий шум - -120дБп/Гц;

Частотний відступ - 100Гц.

При заданих параметрах імовірність бітової помилки при проходженні інформації через систему рівна нулю, а спектр сигналу на виході передавача виглядає наступним чином:

Рис.4.2.Спектр сигналу WiMax

Тепер отримаємо залежність зміни BER у відповідності до співвідношення сигнал-шум, несучої частоти та відстані.

Рис.4.3. Деякі залежності, отримані за допомогою імітаційної моделі.

Так, на основі даних досліджень можна визначити, що система із заданою ймовірністю бітової помилки 10^-6 та відношенням сигнал/шум на рівні 30дБ, може збільшити радіус покриття комірки до 1.7км. Або при заданому радіусі дії комірки може працювати у місцевості з гіршим SNR порядку на 2дБ, чи на вищій на 1ГГц частоті. Дана імітаційна модель дає можливість дослідити і ряд інших залежностей, таких як співвіднешення BER та фазового шуму, температури, частотного відстуну, I/Q дисбалансу та ряду інших параметрів. Використовуючи дані залежності можливо отримати багатомірну систему для розрахунку покриття комірки шляхом порівняння значної кількості параметрів системи.

5.Висновок

В даній курсовій роботі розглядалися актуальні проблеми однієї із найсучасніших широкосмугових радіотехнологій - WiMax. Основна увага приділялась оцінці факторів, що впливають на радіус дії системи, та на основі них - можлива методика розрахунку покриття WiMax. Було наведено дві основні стратегії покриття території - на основі максимальної густини потоку даних та на основі максимального покриття території, серед яких стратегія максимального покриття території була вибрана, як оптимальна для території України. Серед основних чинників, що впливають на дальність передачі інформації, були окремо розглянуті вплив виду модуляції, чутливість приймача, коефіцієнт системного підсилення, вплив інтерференції та ряд інших факторів і параметрів. Через неможливість дослідження реальної системи передачі була досліджена фізико-математична імітаційна модель WiMax, за допомогою якої отриманий зручний математичний апарат для розрахунку покриття в залежності від параметрів системи.

6. Список літератури

1) Широкополосные беспроводные сети передачи информации. Вишневський В.М., М:. Техносфера, 2005.

2) Цифровая связь. Б.Скляр. Москва,Санкт-Петербург,Киев, 2003.

3) Цифровая связь. Прокис Джон. - М.: Радио и связь. 2000.

4) Цифровая обработка сигналов. А.Б.Сергиенко. СПб.: Питер, 2003.

5) www.unidata.com.ua

Страницы: 1, 2, 3