скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Дослідження математичної моделі WiMax та розрахунок покриття на її основ скачать рефераты

p align="left">ь General QAM Modulator Baseband(QAM модулятор) модулює вхідний сигнал використовуючи метод квадратурної фазової модуляції(QPSK), що заміняє 2бітову послідовність за допомогою одного символу із відповідною синфазною(I) і квадратурною складовою(Q) з векторних діаграм Грея.

Рис.1.11. Векторна діаграма Грея для QPSK.

o Normalize(Нормалізатор) розкладає комплексний сигнал Z після модуляції на real(Z) - i*imag(Z) та перемножує на величину 1/v2:

Рис.1.12. Нормалізатор.

o OFDM Symbols(Формувач OFDM повідомлення) проводить OFDM модуляцію потоку даних в одному частотному каналі. Для цього елементи вхідного потоку інтерпретуються як 192 несучі, що групується по 12 та передається 16 групами на вихідні порти. До них додаються дві групи(27 і 28 несучих), що утворюють захисний інтервал на границі частотного діапазону. В результаті об'єднання груп утворюється вихідний сигнал, над яким проходиться зворотнє швидке перетворення Фур'є та додається циклічний префікс (коефіцієнти 193-256 та 1-256).Утворений сигнал із 320 символів передається через канал зв'язку.

Рис.1.13. OFDM-модулятор.

o OFDM Data(відновлювач даних з OFDM - повідомлення) отримує сигнал після проходження ним каналу зв'язку. Він відкидає циклічний префікс, проводить швидке перетворення Фур'є, об'єднує інформацію в кадри по 256символів, видаляє елементи із 29 до 128 та від 130 до 229. На виході отримується кадр із 192 символів.

Рис.1.14. OFDM-демодулятор.

o Denormalize(Денормалізатор) являється точною копією блока Normalize.

o Demodulator виконує QPSK демодуляцію та перетворює цілі числа до біт з відповідністю 1 число до 2-х біт. На виході отримується рамка із 384 бітів.

o

Рис.1.13. Демодулятор QPSK.

o Deinterleaver(зворотній перемішувач) відновлює початковий порядок бітів, аналогічний послідовності до обробки перемішувачем на передаючій стороні.

Рис.1.14. Зворотній перемішувач.

Viterbi Decoder

Рис.1.15. Декодер Вітербі

ь Unipolar to Bipolar Converter(перетворювач однополярного коду до двополярного) перетворює вхідний однополярний сигнал до двополярного вихідного сигналу. Так вхідний сигнал містить значення одиниць та нулів, в той час як вихідний 1 та -1.

ь Insert Zero(Блок додавання нулів) будує вихідний вектор на основі додавання нулів до вхідної послідовності для розширення її із 384 до 640 бітів. Відбувається вставка 4 нулів на кожні 6 символів згідно алгоритму reshape([1 0 1 0 1;1 1 0 1 0], 10, 1). Для прикладу, додавання нулів із початковим вектором [1,0,1,1,1,0] цього блоку буде виглядати наступним чином:

Рис.1.16. Приклад роботи блоку додавання нулів.

ь Viterbi Decoder(Декодер Вітербі) використовує алгоритм Вітербі для декодування кодованої вхідної інформації. Ідея алгоритму Вітербі полягає в тому, що в декодері відтворюють всі можливі шляхи послідовних змін стану сигналу, порівнюючи при цьому кодові символи із прийнятими аналогами із каналу зв'язку, і на основі аналізу помилок між прийнятими і потрібними символами вибирають оптимальний шлях. Декодування по методу Вітербі являє собою алгоритм пошуку найкращого, максимально правдоподібного шляху на графі - решіточній діаграмі коду. До складу декодеру Вітербі входять три основні блоки:

· гілкового метричного обчислення(BMC);

· додавання-порівняння і відбору(FCS);

· зворотного декодування (TBD).

Рис.1.17. Блок-схема декодера Вітербі.

Як приклад, побудова BMC для 1/2 швидкості та nsdec = 3 буде наступною:

Рис.1.18. Будова блоку гілкового метричного обчислення(BMC).

ACS складову в загальному вигляді відображає наступний рисунок:

Рис.1.19. Будова блоку додавання-порівняння і відбору(FCS).

o Block Decoder

Рис.1.20. Блочний декодер.

ь Bit to Integer Converter2(Перетворювач біт - ціле десяткове число2) перетворює послідовність з 8 бітів в одне ціле десяткове число.

ь Selector1(Прилад відбору1) відбирає елементи з порядковим номером від 2 до 40, а перший елемент додається в кінець послідовності.

ь Zero Pad to Code Word Size1(Доповнювач нулями до розміру кодового слова1) збільшує розмір повідомлення з 40 до 239 додаючи на початок повідомлення необхідну кількість нулів.

ь Zero Pad to Code Word Size2(Доповнювач нулями до розміру кодового слова2) збільшує розмір повідомлення з 239 біт до 255 додаючи необхідну кількість нулів у кінці повідомлення.

ь Integer-Output RS Decoder(Декодер Ріда-Соломона з цілочисельним значенням на виході) відновлює повідомлення із кодового слова Ріда-Соломона. Для належного декодування параметри даного блока повинні збігатися із параметрами кодера. В результаті декодування отримується 239бітна послідовність.

ь Selector2(Прилад відбору2) вибирає біти з індексами 204-239 та будує з них вихідну послідовність.

ь Integer to Bit Converter3(Перетворювач ціле десяткове число - біт3) перетворює ціле число у послідовність із 8 бітів.

o De-Randomizer відбирає перші 280 біт із 288бітного вхідного вектора та проводить логічну операцію XOR між отриманою послідовністю після селектора та псевдовипадковою послідовністю, в результаті чого отримується початковий сигнал.

Рис.1.21. De-Randomizer.

3.Теоретичний огляд розрахунку покриття WiMax

Розрахунок покриття WiMax - досить неоднозначний процес, що залежить від великої кількості параметрів середовища передачі та тих, що закладені в будову системи WiMax. Розрізняють дві стратегії побудови мережевої інфраструктури WIMAX.

Перша стратегія орієнтована на отримання максимальної щільності потоку даних на заданій території. Дана стратегія застосовується в великих містах з високою щільністю населення з розвиненою проводовою мережевою інфраструктурою. Основною метою є забезпечення конкурентності з проводовим широкосмуговим доступом DSL і надання мультимедійних послуг.

Друга стратегія, застосовна в умовах відсутності або низького рівня конкуренції з боку дротяних систем, припускає таке розміщення базових станцій, яке забезпечує отримання максимальної зони покриття із забезпеченням заданої щільності потоку даних. Дана стратегія застосовна в сільських районах, а також в містах і обласних центрах з низьким розвитком дротяної інфраструктури, що характерний для більшості регіонів України. Реалізація даної стратегії дозволяє отримувати щільність потоку даних 1-6 Mbps/кв.км. Мета реалізації даної стратегії полягає в забезпеченні потрібної для послуг швидкості, що надаються оператором, передачі на максимальних територіях.

Реалізація стратегії максимізації щільності потоку даних на дозволяє при обмеженому частотному ресурсі отримати конкурентну з DSL густину потоку даних (20-40 Mbps/ кв.км) при високій щільності розміщення базових станцій (БС) Base Spacing,що рівна 1-2 км. При цьому TDD БС мають можливість повторного використання частот на одній БС і можливості collocation БС - синхронізації роботи БС з метою виключення взаємних перешкод. В умовах обмеженості частотного ресурсу це дозволяє TDD БС досягати великих значень щільності потоку даних в порівнянні з продуктивнішим устаткуванням FDD, що вимагає для своєї роботи значного частотного ресурсу.

Реалізація стратегії максимізації площі територій, що покриваються послугою, ускладнюється відносно високими втратами потужності радіосигналу при розповсюдженні радіохвиль в діапазоні порядку частот 5 Ггц. Ці втрати на частоті 5 Ггц декілька вище за аналогічні втрати на нижчих частотах 2.5 Ггц і 3.5 Ггц. Проте, застосування стратегії максимізації території, що покривається, на частоті 5 Ггц для фіксованого безпровідного доступу достатньо ефективно. Річ у тому, що фіксований доступ припускає оснащення абонентських терміналів зовнішніми антенами. У мережах WIMAX це можуть бути антени для використання усередині приміщень, якими оснащуються (self-installable) абонентські термінали, що інсталюються абонентами самостійно, і зовнішні антени, що встановлюються поза приміщеннями, вимагають професійної інсталяції оператором зв'язку. По оцінках фахівців, більшість абонентських терміналів, що працюють в мережах WIMAX фіксованого доступу в діапазоні частот 5 Ггц, будуть оснащені зовнішніми антенами. При цьому зовнішні антени 5 Ггц мають в середньому на 5-7 dbi більше посилення в порівнянні з антенами аналогічних розмірів діапазону 2.5 і 3.5 Ггц. Вище посилення зовнішніх абонентських антен якраз і компенсує підвищені втрати при розповсюдженні радіосигналу.

Таким чином, застосування устаткування стандарту IEEE 802.16-2004 дозволяє покривати послугою широкосмугового доступу обширні території з мінімумом витрат, тобто ефективно реалізовувати стратегію максимізації території, що покривається. При цьому важливою особливістю WIMAX мереж є відносно невеликий радіус обслуговування self-installable абонентських терміналів. Втрати потужності при розповсюдженні радіосигналу в умовах міської забудови поза прямою видимістю в діапазоні 5 Ггц набагато більш значні чим, наприклад, в діапазоні частот 2.5 Ггц. Ці підвищені втрати неможливо компенсувати застосуванням в self-installable абонентських терміналах потужних антен. Тому максимальна дальність обслуговування таких абонентів поза прямою видимістю базової станції значно менша, ніж на нижчих частотах, і не перевищує 1 км. Таким чином, в мережах WIMAX діапазону частот 5 Ггц self-installable абонентські термінали практично застосовуватися не будуть. Установка абонентських outdoor терміналів із зовнішніми направленими антенами (зокрема з інтегрованими в корпус терміналу антенами) вимагає професійних навиків і зазвичай проводиться силами оператора зв'язку. Установка абонентського терміналу не вимагає наявності прямої видимості на базову станцію за умови дотримання двох умов:

1) наявність потрібного для використовуваної модуляції відношення SNR сигнал/шум; 2) необхідного перевищення (fade margin 6-12 db) рівнем корисного сигналу відповідного використовуваній модуляції порогу чутливості. Зазвичай дані умови виконуються для абонентських терміналів, оснащених зовнішньою антеною або інтегрованою антеною з високим посиленням, на дальності не більше 3-5 км. від базової станції. На вищих дальностях при установці абонентських терміналів потрібно забезпечити пряму видимість (без обмежень на ступінь закриття зони Френеля).

Далі описуються методи розрахунку радіусу комірки на основі стратегії максимізації площі територій, оскільки саме вона характерна для території України.

Максимальний радіус комірки WiMax , як і в будь-яких радіосистемах, визначається на основі попередньо заданої BER(ймовірності бітової помилки) або SINR (Signal to interference plus noise ratio). Збільшення радіусу комірки спричиняє і збільшення BER у її межах. Відповідно, можна визначити максимальний радіус комірки із допустимим значенням ймовірності помилки у межах комірки. Для систем WIMAX стандарт IEEE 802.16 визначає максимально допустимий рівень бітової помилки рівний Ber=10e-6 (відсоток прийому помилкових біт інформації не більше 0,005%) або SINR >= 21 db. При даному рівні помилок система WIMAX здатна підтримувати з необхідною якістю найкритичніший до помилок сервіс цифрової телефонії (сервіс TDM).

3.1 Величина радіусу комірки в залежності від виду модуляції

Слід зазначити, що технологія WIMAX має найвищі в класі BWA енергетичні параметри каналу зв'язку, що забезпечує задану високу швидкість передачі даних (пропускну здатність) на найбільшій дальності і ,навпаки, - на заданій дальності мережа WIMAX має найвищу пропускну здатність. Тим самим, системи WIMAX забезпечують найвищу щільність потоку даних, вимірювану пропускною здатністю в Mbps в перерахунку на один км2 території, що покривається. Висока пропускна здатність систем WIMAX досягається за рахунок можливості підтримки на великих дальностях високої символьної швидкості унаслідок високої енергетики системи. Символьна швидкість, або по іншому швидкістю модуляції (або кодова швидкість), характеризує швидкість передачі інформації (даних) на фізичному (радіо) рівні мережі і є швидкістю передачі послідовності символів, що реалізовується модуляцією сигналу. Енергетика системи визначається величиною параметра системного підсилення (System Gain).

Символьна швидкість передачі повністю визначається використовуваним типом модуляції, тобто кожен тип модуляції забезпечує певну символьну швидкість. Тим самим, висока щільність потоку даних в мережах WIMAX досягається за рахунок можливості підтримки на великих в порівнянні з іншими системами дальностях високошвидкісних типів модуляцій.

У системах WIMAX застосовується квадратурна амплитудно-фазова модуляції QAM, а також фазова модуляція QPSK і BPSK. На сьогоднішній день QAM є одному з найефективніших методів модуляції, що дозволяє досягати максимально можливі швидкості передачі даних.

При реалізації QAM кожна несуча OFDM сигналу моделюється корисним сигналом одночасно по амплітуді і по фазі, утворюючи сигнал, положення якого в просторі координат фази і амплітуди називається діаграмою сузір'я (constellation diagramm) та несе інформацію про закодований в ньому символ. На мал. 3.1 представлена діаграма сузір'я модуляції 16QAM.

Мал. 3.1. Діаграма сузір'я модуляції 16 QAM.

Вектор сигналу 16 QAM має 16 можливих позиції в просторі координат амплітуди і фази, що кодує 16 значень символу від 0000 до 1111. Вектор сигналу 64 QAM має 64 позиції, що кодує 64 значення символу. Модуляції BPSK і QPSK кодують 2 і 4 значення символу за допомогою, відповідно, два і чотирьох можливих значень фази. Амплітуда сигналу в модуляціях BPSK і QPSK не міняється. Тим самим ці два типи модуляції можна розглядати як окремий випадок амплитудно-фазової модуляції QAM. Таким чином, модуляція 64qam є найшвидкіснішою, оскільки дозволяє передавати 64 можливих значення в одному символі даних, що забезпечує вищу символьну швидкість і, в результаті, вищу швидкість передачі даних в порівнянні з нижчими модуляціями.

На мал. 3.2 представлені зони обслуговування різними модуляціями фіксованих абонентів мережі WIMAX в діапазоні частот 5 Ггц. Так обслуговування абонентів, оснащених зовнішньою направленою антеною на найшвидкіснішій модуляції 64QAM3/4, що підтримує максимальну символьну швидкість і відповідну швидкість передачі даних, забезпечується на дальності до 25 км., 16QAM1/2 - на дальності до 40-45 км. Тим самим, дальність обслуговування на швидкісних модуляціях 64 QAM і 16 QAM в мережі WIMAX в чотири і більше разів більше відповідних дальностей обслуговування на аналогічних модуляціях систем preWiMax.

Страницы: 1, 2, 3