скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Беспроводные телекоммуникационные системы скачать рефераты

b> 4. Характеристики приема сигналов в телекоммуникационных системах

4.1 Вероятности ошибок различения M известных сигналов

Под обнаружением сигнала в радиоэлектронике понимают анализ принятого колебания y(t), завершающийся вынесением решения о наличии или отсутствии в нем некоторой полезной составляющей, которую и называют сигналом. Различение М сигналов определяют как анализ принятого колебания y(t), заканчивающийся принятием решения о том, какой именно из М сигналов, принадлежащих указанному заранее множеству S{s0(t), s1(t), …, sM-1(t)} присутствует в y(t). Обнаружение сигнала есть частный случай различения двух сигналов, один из которых равен нулю на всем интервале наблюдения.

Пусть наблюдаемое колебание y(t) является реализацией случайного процесса, который имеет распределение Wy, т.е. n-мерную плотность вероятности (ПВ) W(y) [либо функционал ПВ W(y(t))], принадлежащее одному из М непересекающихся классов Wi (Wi?Wk=Ш, i?k, i, k=0, 1, …, M-1). Необходимо, пронаблюдав реализацию y(t), решить, какому из классов принадлежит Wy. Предположение о том, что WyWi, называют гипотезой Hi: WyWi. Решения, являющиеся результатом проверки гипотез, будем обозначать , где i{0, 1, …, M-1} - номер гипотезы, истинность которой декларируется принятым решением. Анализируемое колебание y(t) является результатом взаимодействия присутствующего в нем сигнала si(t) с мешающим случайным процессом (помехой, шумом) x(t): y(t)=F[si(t), x(t)]. От того, какой из М возможных сигналов присутствует в y(t), зависит ПВ ансамбля, которому принадлежит y(t), так что каждому si(t) соответствует некоторый класс Wi распределений ансамбля, представляемого y(t). Таким образом, гипотезы Hi трактуются как предположения о наличии i-го (и только i-го) сигнала в y(t). При этом решения , одно из которых служит итогом процедуры различения, есть утверждения о том, что в принятом колебании содержится именно i-й сигнал. Гипотезам Hi соответствуют классы Wi. Гипотезу Hi называют простой, если класс Wi содержит одно и только одно распределение. Любую другую гипотезу называют сложной. М сложных гипотез называют параметрическими, если соответствующие им классы отличаются друг от друга только значениями конечного числа параметров одного и того же распределения, описываемого известным законом. В противном случае гипотезы именуют параметрическими.

Рассмотрим различение М детерминированных ненулевых сигналов одинаковой энергии. При этом за основу будет принято правило максимального правдоподобия (МП)

оптимальное в том случае, когда критерием качества служит сумма условных вероятностей ошибок, либо полная вероятность ошибки при равных апостериорных вероятностях всех сигналов pi=1/M.

При произвольном М различитель, придерживающийся правила МП, считает присутствующим в y(t) сигнал, наименее удаленный от y(t) в смысле евклидова расстояния или, что при одинаковых энергиях сигналов равносильно, имеющий с y(t) максимальную корреляцию . Если рассматривать сигналы s0(t), s1(t), …, sM-1(t) как пучок векторов, расположенный в М-мерном пространстве, то для того чтобы по возможности уменьшить вероятность перепутывания i-го сигнала с k-м, следует максимально «раздвинуть» i-й и k-й векторы. Таким образом, оптимальный выбор М детерминированных сигналов сводится к поиску такой конфигурации пучка М векторов, в которой минимальное евклидово расстояние между парой векторов было бы максимальным: min dik=max (i?k). Так как при равенстве энергий, т.е. длин векторов

,

где сik - коэффициент корреляции i-го и k-го сигналов, Е - энергия сигнала, то требование максимума минимального расстояния тождественно условию минимума максимального коэффициента корреляции в множестве сигналов S{s0(t), s1(t), …, sM-1(t)}. Предельно достижимый минимум максимального коэффициента корреляции устанавливается довольно легко. Просуммировав сik по всем i и k, получим

где неравенство следует из неотрицательности квадрата под интегралом. Кроме того, в сумме слева М слагаемых при i=k равны единице, а остальные М(М-1) не больше смакс=max сik (i?k). Поэтому М+М(М-1)смакс?0 и смакс?-1/(М-1).

Конфигурацию из М векторов, в которой косинус угла между любой парой векторов равен -1/(М-1), называют правильным симплексом. Если эти векторы взять в качестве М сигналов, то полученный детерминированный ансамбль при равновероятности всех si(t) обеспечит минимум полной вероятности ошибки Pош, что и решает вопрос об оптимальном выборе М сигналов. При М>>1 выполняется соотношение -1/(М-1)?0, и поэтому при большом числе различаемых сигналов ортогональный ансамбль практически не проигрывает симплексному в значении Pош.

Последовательность вывода точного выражения для вероятности ошибки различения М сигналов с произвольными сik такова. Плотность вероятности (ПВ) системы случайных величин z0, z1, …, zM-1 есть М-мерный нормальный закон, для задания которого достаточно знать средние всех zi и их корреляционную матрицу. Для средних при истинности гипотезы Hl имеем . Корреляционный же момент i-й и k-й корреляций равен N0Eсik/2. После того как М-мерная ПВ найдена, ее М-кратный интеграл по области zl?zi, i=0, 1, …, M-1, позволяет получить вероятность правильного решения при условии истинности Hl. Сумма таких вероятностей, деленная на М (с учетом равновероятности сигналов), будет полной вероятностью правильного решения Pпр, связанной с Pош очевидным равенством Pош=1-Pпр. Получаемый таким образом М-кратный интеграл в ряде важных случаев удается свести к однократному. Так, для любых равнокоррелированных (равноудаленных) сигналов (сik=с, i?k)

В практических расчетах это выражение используют редко из-за необходимости численного интегрирования. Полезна его оценка сверху, для вывода которой будем считать, что истинна гипотеза Hl. При этом ошибка происходит всегда, когда истинно хотя бы одно из событий zi>zl, i?l. Вероятность ее Pошl, равная вероятности объединения событий zi>zl, i?l, по теореме сложения вероятностей,

и в силу неравенства Буля не больше первой суммы справа. Так как каждое слагаемое этой суммы есть вероятность перепутывания двух сигналов [sl(t) с si(t)], то для равноудаленных сигналов

Здесь - отношение сигнал/шум на выходе фильтра, согласованного с si(t) при гипотезе Hi, - вероятность перепутывания двух сигналов. При равновероятных сигналах (pi=1/M) приходим к так называемой аддитивной границе полной вероятности ошибки

Использование этого выражения оправдывается, с одной стороны, асимптотическим сближением его правой части и Pош по мере роста требований к качеству различения (Pош>0), а с другой - тем, что, выбирая необходимую энергию сигналов (минимальное значение q) исходя из правой части выражения, разработчик всегда действует с известной перестраховкой, гарантируя удержание фактической вероятности ошибки ниже цифры, принятой им при расчете. [9]

4.2 Вероятности ошибок различения M флуктуирующих сигналов

Далеко не всегда наблюдатель подробно априори осведомлен о различаемых сигналах. Чаще ему заранее не известны не только номер присутствующего в анализируемой реализации сигнала, но и значения каких-либо параметров (амплитуды, частоты, фазы и пр.) каждого из М возможных сигналов. Сами сигналы при этом уже не являются детерминированными, поскольку параметры их не заданы; соответствующую задачу различения называют различением сигналов с неизвестными параметрами.

Рассмотрим решение этой задачи на примере различения сигналов со случайными начальными фазами. Такие сигналы описываются моделью

si(t; ц)=Re{i(t)exp[j(2рf0t+ц)]},

где f0 - известная центральная частота; ц - случайная начальная фаза с априорной ПВ W0(ц); (t) =S(t)ejг(t) - комплексная огибающая сигнала s(t), являющегося реализацией s(t; ц) при ц=0: s(t)=s(t; 0); S(t) и г(t) - известные законы амплитудной и угловой модуляции. Применению правила МП должно предшествовать вычисление функции (функционала) правдоподобия (ФП) W(y(t)|Hi), т.е. усреднение ФП W(y(t)|Hi, ц), построенной для детерминированных сигналов с фиксированной фазой ц по всем ее возможным значениям с учетом априорной ПВ W0(ц). При равномерной ПВ фазы W0(ц)=1/(2р), |ц|?р, с учетом равенства энергий всех различаемых сигналов W(y(t)|Hi) представляет собой модифицированную функцию Бесселя нулевого порядка:

где c - коэффициент, содержащий сомножители, не зависящие от i, а - модуль корреляции комплексных огибающих принятого колебания y(t) и i-го сигнала. Монотонность функции I0(·) на положительной полуоси позволяет перейти к достаточной статистике Zi и записать правило МП в виде

Таким образом, оптимальный различитель М сигналов равной энергии со случайными начальными фазами должен вычислить все М величин Zi и, если максимальной из них является Zk, принять решение о присутствии в y(t) k-го сигнала. Это означает, что содержащимся в наблюдаемом колебании y(t) считается тот сигнал, комплексная огибающая которого имеет наибольшую по модулю корреляцию с комплексной огибающей y(t).

Точные формулы для вероятностей ошибок различения М произвольных сигналов достаточно громоздки даже при М=2, однако в приложениях чаще других встречаются ансамбли сигналов, ортогональных в усиленном смысле. Последнее означает, что любые два несовпадающих сигнала si(t; цi), sk(t; цk) ортогональны при любых значениях начальных фаз:

?si(t; цi)sk(t; цk)dt=0 при любых цi, цk и i?k,

или, что эквивалентно, ортогональны детерминированные комплексные огибающие этих сигналов:

.

Условие ортогональности в усиленном смысле жестче обычного требования ортогональности, фигурировавшего ранее в применении к детерминированным сигналам. Так, два отрезка косинусоиды, сдвинутые на угол ±р/2, являясь ортогональными в обычном смысле, не ортогональны при изменении сдвига фаз, т.е. в усиленном смысле. В то же время сигналы, не перекрывающиеся по времени или по спектру, ортогональны и в усиленном смысле.

Если обратиться сначала к различению двух сигналов, нетрудно понять, что противоположная пара, минимизирующая Pош в классе детерминированных сигналов, в задачах, где начальные фазы сигналов случайны, неприемлема. Действительно, единственным признаком, по которому различаются противоположные сигналы, является знак, т.е. присутствие или отсутствие в начальной фазе слагаемого р. Однако, когда перед поступлением на различитель каждый из сигналов приобретает случайный фазовый сдвиг, попытки использовать начальную фазу, в качестве характерного признака сигнала, бессмысленны, и в различителе от неинформативной величины ц приходится избавляться. Таким образом, можно прийти к выводу, что в классе М?2 сигналов со случайными фазами симплексные ансамбли оптимальными свойствами не обладают. Оптимальными же оказываются именно ансамбли сигналов, ортогональных в усиленном смысле: каждый из таких сигналов вызывает отклик на выходе только одного из фильтров приемной схемы, и поэтому перепутывание i-го сигнала с k-м произойдет лишь в том случае, когда огибающая шума на выходе k-го согласованного фильтра (СФ) будет иметь значение, превосходящее значение огибающей суммы сигнала с шумом на выходе i-го СФ. Нарушение условия ортогональности в усиленном смысле приведет к появлению реакции на i-й сигнал на выходе не только i-го, но и других СФ, например k-го, в результате чего выброс огибающей на выходе k-го СФ, больший значения Zi, станет более вероятным.

Чтобы найти вероятность перепутывания p01 s0(t; ц) с s1(t; ц) при различении двух сигналов, необходимо проинтегрировать совместную ПВ Z0, Z1 при гипотезе H0 W(Z0, Z1|H0) по области Z1>Z0. Для ортогональных в усиленном смысле сигналов величины Z0 и Z1 независимы, поэтому W(Z0, Z1|H0)=W(Z0|H0)W(Z1|H0). Одномерные же ПВ Z0 и Z1 известны: при истинности H0 Z0 как огибающая суммы сигнала с шумом имеет обобщенную рэлеевскую ПВ; Z1 как огибающая только шума является рэлеевской случайной величиной. Перемножив эти ПВ, после интегрирования полученной ПВ W(Z0, Z1|H0) и с учетом очевидного равенства p01=p10 для полной вероятности ошибки различения двух равновероятных ортогональных в усиленном смысле сигналов со случайными фазами получим

Повторение рассуждений пункта 4.2. (для детерминированных сигналов) приводит к аддитивной границе

которой, как правило, и пользуются для оценки вероятности ошибки, если число равновероятных ортогональных в усиленном смысле сигналов М?2. [9]

4.3 Расчет ошибок различения M сигналов с неизвестными неэнергетическими параметрами

Рассмотрим задачу различения «М» ортогональных сигналов с неизвестным временным положением в асинхронных системах связи с кодовым разделением каналов. Решение о наличии сигнала в канале выносится по методу максимального правдоподобия. Найдем вероятность ошибки различения с учетом выбросов шума на интервале возможных временных задержек сигналов.

Предположим, что имеется «М» абонентов системы связи, каждый из которых использует свой сигнал. Наибольшую помехоустойчивость при передаче информации в таких условиях обеспечивают симплексные сигналы. При М>>1 помехоустойчивость такой системы сигналов практически совпадает с помехоустойчивостью системы ортогональных сигналов, для которых

Здесь Ekf - энергия сигнала fk. Условие ортогональности, которое можно назвать «ортогональностью в точке», на практике требует системы единого времени для организации синхронной связи. В асинхронных системах используются ортогональные в усиленном смысле сигналы, для которых при всех значениях фk и фm

Если Rkm(фk, фm)<0.25 - 0.3, то можно считать ансамбль сигналов практически удовлетворяющим условию ортогональности.

Будем рассматривать систему сложных сигналов {fk(t)}, k=1…M ортогональную при произвольном сдвиге. Среди сложных сигналов весьма широкое применение получили фазоманипулированные (ФМ) сигналы с комплексной огибающей вида

где ai - код последовательности, u0(t) - форма огибающей элементарной посылки, Д - ее длительность. В случае прямоугольной формы огибающей элементарной посылки автокорреляционная функция (АКФ) имеет вид:

Здесь R0(ф)=(1-|ф|/Д). В окрестности максимума АКФ R(ф)= R0(ф)=(1-|ф|/Д). На входе приемника после прохождения многолучевого канала полезный сигнал может быть записан как

дn - относительная задержка сигнала по лучу с номером n, ф - неизвестное время прихода, которое находится внутри интервала [T1,T2]. еn=An/A0 - относительная амплитуда «n»-го луча, параметр н имеет смысл числа дополнительных лучей распространения. Относительные задержки дn>Д, т.е. лучи разделяются при обработке сложного сигнала. При н=0 сигнал имеет вид s(t)=A0f(t-ф0).

Рассмотрим алгоритм обработки. На вход приемника поступает смесь

x(t)=sk(t-ф0k)+з(t), (t[0,TН]),

где sk(t) - один из возможных сигналов, k=1…M, ф0k - временная задержка сигнала, з(t) - белый гауссовский шум с нулевым средним значением и спектральной плотностью мощности N0/2. Необходимо вынести решение, какой из M возможных сигналов присутствует на входе приемника. Рассмотрим приемник без компенсации многолучевости. Линейная часть такого приемника содержит М каналов, в которых формируются статистики вида

Выражение для Lk(фk) можно переписать в боле удобном для анализа виде

Здесь и в последующих формулах индекс k для краткости опускается, если исследуются характеристики одного канала, z02=2A02Ef/N0 - энергетическое отношение сигнал/шум, S(ф-ф0)=?f(t-ф) f(t-ф0)dt/Ef - нормированная сигнальная функция, N(ф)=?n(t)f(t-ф)dt - нормированная шумовая функция с нулевым средним значением, единичной дисперсией и корреляционной функцией <N(ф')N(ф'')>=S(ф'-ф''). Огибающая сигнальной функции S(ф-ф0) есть АКФ.

Согласно алгоритму максимального правдоподобия решение в пользу сигнала с номером m выносится, если sup Lm(фm)?sup Lk(фk). Для нахождения вероятностей правильных и неправильных решений по этому правилу необходимо вычислить распределение абсолютных максимумов процессов L(ф) на интервале [Т1,Т2].

Рассмотрим методику расчета вероятности ошибки различения M сигналов с неизвестными параметрами при однолучевом распространении сигналов (или в схеме оптимального сложения сигналов). Обозначим через Hk=sup Lk(фk) - величину абсолютного максимума статистики на выходе k-го канала приемника. Совместное распределение случайных величин {H1,H2,..HM} запишем как w(u1,u2,..uM). Условие ортогональности для сигналов fk(t) в статистическом смысле означает независимость случайных величин Hk, k=1..M. Тогда вероятность правильного решения по алгоритму максимального правдоподобия можно записать

Если учесть условие ортогональности системы сигналов {sk(t)}, то

Предположим, что система сигналов {sk(t)} имеет одинаковую энергию, то есть z0m=z0k=z0. Тогда формулы для Hm и Hk можно переписать в виде

Функция распределения абсолютного максимума hk реализации гауссовского процесса с корреляционной функцией R(ф) может быть аппроксимирована формулой

о=(T2-T1)/Д - приведенная длина априорного интервала [Т1,Т2], имеющая смысл числа разрешения ФМ сигналов на этом интервале. Аппроксимация асимптотически точна при о>?, u>?. При конечных значениях о и u можно использовать более точную аппроксимацию

Здесь

- интеграл вероятности. При о>>1 и z0>>1 функция распределения абсолютного максимума hm может быть записана как Fm(u)=Fs(u)FN(u)?Ц(u-z0)FN(u). Подставляя выражения FN(u) и Fm(u) в соотношение для Pправ, получаем после соответствующих преобразований

Первое слагаемое соответствует априорной вероятности правильного решения для M равновозможных событий. Второе слагаемое определяет изменения вероятности за счет принятия решения. При z0>? интеграл в выражении для Pправ стремится к 1 и, соответственно, Pправ>1.

Полная вероятность ошибки различения М сигналов с неизвестными параметрами равна

Из формул видно, что с увеличением числа различаемых сигналов вероятность ошибки принятия решения Pe(z0) увеличивается. С увеличением априорного интервала временных задержек сигналов о вероятность ошибки различения Pe(z0) значительно возрастает. [8]

4.4 Сравнение синхронных и асинхронных систем связи

Как правило, при рассмотрении производительности приемника или демодулятора предполагается наличие некоторого уровня синхронизации сигнала. Например, при когерентной фазовой демодуляции (схема PSK) предполагается, что приемник может генерировать опорные сигналы, фаза которых идентична (возможно, с точностью до постоянного смещения) фазе элементов сигнального алфавита передатчика. Затем в процессе принятия решения относительно значения принятого символа (по принципу максимального правдоподобия) опорные сигналы сравниваются с поступающими.

При генерации подобных опорных сигналов приемник должен быть синхронизирован с принимаемой несущей. Это означает, что фаза поступающей несущей и ее копии в приемнике должны согласовываться. Другими словами, если в поступающей несущей не закодирована информация, поступающая несущая и ее копия в приемнике будут проходить через нуль одновременно. Этот процесс называется фазовой автоподстройкой частоты (это - условие, которое следует удовлетворить максимально близко, если в приемнике мы хотим точно демодулировать когерентно модулированные сигналы). В результате фазовой автоподстройки частоты местный гетеродин приемника синхронизируется по частоте и фазе с принятым сигналом. Если сигнал-носитель информации модулирует непосредственно не несущую, а поднесущую, требуется определить как фазу несущей, так и фазу поднесущей. Если передатчик не выполняет фазовой синхронизации несущей и поднесущей (обычно так и бывает), от приемника потребуется генерация копии поднесущей, причем управление фазой копии поднесущей производится отдельно от управления фазой копии несущей. Это позволяет приемнику получать фазовую синхронизацию как по несущей, так и по поднесущей.

Кроме того, предполагается, что приемник точно знает, где начинается поступающий символ и где он заканчивается. Эта информация необходима, чтобы знать соответствующий промежуток интегрирования символа - интервал интегрирования энергии перед принятием решения относительно значения символа. Очевидно, если приемник интегрирует по интервалу несоответствующей длины или по интервалу, захватывающему два символа, способность к принятию точного решения будет снижаться.

Можно видеть, что символьную и фазовую синхронизации объединяет то, что обе включают создание в приемнике копии части преданного сигнала. Для фазовой синхронизации это будет точная копия несущей. Для символьной - это меандр с переходом через нуль одновременно с переходом поступающего сигнала между символами. Говорят, что приемник, способный сделать это, имеет символьную синхронизацию. Поскольку на один период передачи символа обычно приходится очень большое число периодов несущей, этот второй уровень синхронизации значительно грубее фазовой синхронизации и обычно выполняется с помощью другой схемы, отличной от используемой при фазовой синхронизации.

Во многих системах связи требуется еще более высокий уровень синхронизации, который обычно называется кадровой синхронизацией. Кадровая синхронизация требуется, когда информация поставляется блоками, или сообщениями, содержащими фиксированное число символов. Это происходит, например, при использовании блочного кода для реализации схемы прямой защиты от ошибок или если канал связи имеет временное разделение и используется несколькими пользователями (технология TDMA). При блочном кодировании декодер должен знать расположение границ между кодовыми словами, что необходимо для верного декодирования сообщения. При использовании канала с временным разделением нужно знать расположение границ между пользователями канала, что необходимо для верного направления информации. Подобно символьной синхронизации, кадровая равнозначна возможности генерации меандра на скорости передачи кадров с нулевыми переходами, совпадающими с переходами от одного кадра к другому.

Большинство систем цифровой связи, использующих когерентную модуляцию, требуют всех трех уровней синхронизации: фазовой, символьной и кадровой. Системы с некогерентной модуляцией обычно требуют только символьной и кадровой синхронизации; поскольку модуляция является некогерентной, точной синхронизации фазы не требуется. Кроме того, некогерентным системам необходима частотная синхронизация. Частотная синхронизация отличается от фазовой тем, что копия несущей, генерируемая приемником, может иметь произвольные сдвиги фазы от принятой несущей. Структуру приемника можно упростить, если не предъявлять требование относительно определения точного значения фазы поступающей несущей. К сожалению, это упрощение влечет за собой ухудшение зависимости достоверности передачи от отношения сигнал/шум.

До настоящего момента в центре обсуждения находилась принимающая часть канала связи. Однако иногда передатчик играет более активную роль в синхронизации - он изменяет отчет времени и частоту своих передач, чтобы соответствовать ожиданиям приемника. Примером того является спутниковая сеть связи, где множество наземных терминалов направляют сигналы на единственный спутниковый приемник. В большинстве подобных случаев передатчик для определения точности синхронизации использует обратный канал связи от приемника. Следовательно, для успеха синхронизации передатчика часто требуется двусторонняя связь или сеть. По этой причине синхронизация передатчика часто называется сетевой.

Необходимость синхронизации приемника связана с определенными затратами. Каждый дополнительный уровень синхронизации подразумевает большую стоимость системы. Наиболее очевидное вложение денег - необходимость в дополнительном программном или аппаратном обеспечении для приемника, обеспечивающего получение и поддержание синхронизации. Кроме того, что менее очевидно, иногда мы платим временем, затраченным на синхронизацию до начала связи, или энергией, необходимой для передачи сигналов, которые будут использоваться в приемнике для получения и поддержания синхронизации. В данном случае может возникнуть вопрос, почему разработчик системы связи вообще должен рассматривать проект системы, требующий высокой степени синхронизации. Ответ: улучшенная производительность и универсальность.

Рассмотрим обычное коммерческое аналоговое АМ-радио, которое может быть важной частью системы широковещательной связи, включающей центральный передатчик и множество приемников. Данная система связи не синхронизирована. В то же время полоса пропускания приемника должна быть достаточно широкой, чтобы включать не только информационный сигнал, но и любые флуктуации несущей, возникающие вследствие эффекта Доплера или дрейфа опорной частоты передатчика. Это требование к полосе пропускания передатчика означает, что на детектор поступает дополнительная энергия шума, превышающая энергию, которая теоретически требуется для передачи информации. Несколько более сложные приемники, содержащие систему слежения за частотой несущей, могут включать узкий полосовой фильтр, центрированный на несущей, что позволит значительно снизить шумовую энергию и увеличить принятое отношение сигнал/шум. Следовательно, хотя обычные радиоприемники вполне подходят для приема сигналов от больших передатчиков на расстоянии несколько десятков километров, они могут оказаться недееспособными при менее качественных условиях.

Для цифровой связи компромиссы между производительностью и сложностью приемника часто рассматриваются при выборе модуляции. В число простейших цифровых приемников входят приемники, разработанные для использования с бинарной схемой FSK с некогерентным обнаружением. Единственное требование - битовая синхронизация и сопровождение частоты. Впрочем, если в качестве модуляции выбрать когерентную схему BPSK, то можно получить ту же вероятность битовой ошибки, но при меньшем отношении сигнал/шум (приблизительно на 4 дБ). Недостатком модуляции BPSK является то, что приемник требует точного отслеживания фазы, что может представлять сложную конструктивную проблему, если сигналы обладают высокими доплеровскими скоростями или для них характерно замирание.

Еще один компромисс между ценой и производительностью затрагивает кодирование с коррекцией ошибок. При использовании подходящих методов защиты от ошибок возможно значительное улучшение производительности. В то же время цена, выраженная в сложности приемника, может быть высока. Для надлежащей работы блочного декодера требуется, чтобы приемник достигал блочной синхронизации, кадровой или синхронизации сообщений. Эта процедура является дополнением к обычной процедуре декодирования, хотя существуют определенные коды коррекции ошибок, имеющие встроенную блочную синхронизацию. Сверточные коды также требуют некоторой дополнительной синхронизации для получения оптимальной производительности. Хотя при анализе производительности сверточных кодов часто делается предположение о бесконечной длине входной последовательности, на практике это не так. Поэтому для обеспечения минимальной вероятности ошибки декодер должен знать начальное состояние (обычно все нули), с которого начинается информационная последовательность, конечное состояние и время достижения конечного состояния. Знание момента окончания начального состояния и достижения конечного состояния эквивалентно наличию кадровой синхронизации. Кроме того, декодер должен знать, как сгруппировать символы канала для принятия решения при разветвлении. Это требование также относится к синхронизации.

Приведенное выше обсуждение компромиссов велось с точки зрения соотношения между производительностью и сложностью отдельных каналов и приемников. Стоит отметить, что способность синхронизировать также имеет значительные потенциальные последствия, связанные с эффективностью и универсальностью системы. Кадровая синхронизация позволяет использовать передовые, универсальные методы множественного доступа, подобные схемам множественного доступа с предоставлением каналов по требованию (DAMA). Кроме того, использование методов расширения спектра - как схем множественного доступа, так и схем подавления интерференции - требует высокого уровня синхронизации системы. Эти технологии предлагают возможность создания весьма разносторонних систем, что является очень важным свойством при изменении системы или при воздействии преднамеренных или непреднамеренных помех от различных внешних источников. [2]

Заключение

В первом разделе моей работы описаны принципы построения беспроводных телекоммуникационных систем связи: приведена схема построения системы сотовой связи, указаны методы разделения абонентов в сотовой связи и отмечены преимущества (конфиденциальность и помехоустойчивость) кодового разделения по сравнению с временным и частотным, а также рассмотрены распространенные стандарты беспроводной связи DECT, Bluetooth и Wi-Fi (802.11, 802.16).

Далее рассмотрены корреляционные и спектральные свойства сигналов и, для примера, приведены расчеты спектров некоторых сигналов (прямоугольного импульса, гауссовского колокола, сглаженного импульса) и автокорреляционных функций распространенных в цифровой связи сигналов Баркера и функций Уолша, а также указаны типы сложных сигналов для телекоммуникационных систем.

В третьей главе приведены методы модуляции сложных сигналов: методы фазовой манипуляции, модуляция с минимальным частотным сдвигом (один из методов модуляции с непрерывной фазой), квадратурная амплитудная модуляция; и указаны их преимущества и недостатки.

Последняя часть работы содержит рассмотрение вероятностей ошибок различения М известных и М флуктуирующих сигналов на фоне помех, а также алгоритм расчета ошибок различения М ортогональных сигналов с неизвестным временным положением в асинхронных системах связи с кодовым разделением.

Список литературы:

1. Ратынский М.В. Основы сотовой связи / Под ред. Д. Б. Зимина - М.: Радио и связь, 1998. - 248 с.

2. Скляр Б. Цифровая связь. Теоретические основы и практическое применение, 2-е издание.: Пер. с англ. - М.: Издательский дом “Вильямс”, 2003. - 1104 с.

3. Шахнович И. Современные технологии беспроводной связи. Москва: Техносфера, 2004. - 168 с.

4. Баскаков С.И. Радиотехнические цепи и сигналы: Учеб. для вузов по спец. «Радиотехника». - 3-е изд., перераб. и доп. - М.: Высш. шк., 2000. - 462 с.

5. Шумоподобные сигналы в системах передачи информации. Под ред. проф. В.Б. Пестрякова. М., «Сов. радио», 1973. - 424 с.

6. Варакин Л.Е. Системы связи с шумоподобными сигналами. - М.: Радио и связь, 1985. - 384 с.

7. Вишневский В.М., Ляхов А.И., Портной С.Л., Шахнович И.В. Широкополосные беспроводные сети передачи информации. Москва: Техносфера, 2005. - 592 с.

8. Радченко Ю.С., Радченко Т.А. Эффективность кодового разделения сигналов с неизвестным временем прихода. Труды 5 междунар. конф. «Радиолокация, навигация, связь» - RLNC-99, Воронеж, 1999, т.1, с. 507-514.

9. Радиотехнические системы: Учеб. для вузов по спец. «Радиотехника» / Ю.П. Гришин, В.П. Ипатов, Ю.М. Казаринов и др.; Под ред. Ю.М. Казаринова. - М.: Высш. шк., 1990. - 469 с.

Страницы: 1, 2, 3, 4, 5, 6