скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Выдающаяся роль Леонарда Эйлера в развитии алгебры, геометрии и теории чисел скачать рефераты

. е., как и должно быть, уравнение шаровой поверхности. Вслед за тем он приступил к решению задачи об отыскании среди всех поверхностей, проходящих через контур, ограниченный данной пространственной кривой, поверхности с наименьшей площадью. С помощью своего способа образования элемента поверхности он вывел важное условие, r+=0, а отсюда получил дифференциальное уравнение в частных производных минимальных поверхностей, найденное уже раньше другим способом Лагранжем [Misc. Taur., 1760/61 (1762)]. Частные интегралы этого уравнения дали ему в качестве примера минимальных поверхностей винтовую поверхность и катеноид. Принимая либо r, либо равным бесконечности, Менье далее вывел дифференциальное уравнение развертывающихся поверхностей, данное уже Монжем, а в заключение доказал, что оба радиуса кривизны общих линейчатых поверхностей всегда бывают различного знака.

Несмотря на появление этих прекрасных работ, общее понятие кривизны поверхности осталось невыясненным вплоть до К. Гаусса (1828). Эйлер даже ошибочно принял, что всякий элемент поверхности можно рассматривать как сферический («Dioptrica», I, Петербург, 1769); это же случилось раньше с Лейбницем (письмо к Иоганну Бернулли от 29 июля 1698), а позднее также с Далам-бером [«Encyclopedic methodique», Париж, 1784, статья «Кривая» («Courbe»), отдел «Кривые поверхности» (Surfaces courbes)].

Кроме упомянутых работ общего характера в рассматриваемый промежуток времени появился еще ряд работ, посвященных частным вопросам и прежде всего определению поверхностей, обладающих заданными свойствами. Так, Эйлер в Nov. Comm. Petr., 1769, I (1770) исследовал парадокс, заключающийся в том, что поверхности, площадь которых является данной функцией х, у, не должны быть конгруэнтны, как это имеет место в аналогичном случае для плоских кривых. Эйлер нашел дифференциальное уравнение с частными производными

p2+q2=f(x,y)

и проинтегрировал его в случае

f(x,y)=m2+n2.

При этом, кроме плоскости

z = a+ mx +пу,

получались все развертывающиеся поверхности, возникающие при движении плоскости, сохраняющей постоянный угол с осью Оz.

В другой статье [Nov. Act. Petr., 1788 (1790); поступила в 1776] Эйлер занялся поисками поверхностей с постоянным отрезком нормали между поверхностью и плоскостью хОу. Дифференциальное уравнение

z = a

дало здесь «искривленные цилиндры» («cylindri incurvati»), которые позднее были названы поверхностями каналов и которые возникают, когда центр некоторого данного круга движется вдоль произвольной кривой в плоскости хОу, причем плоскость круга все время остается перпендикулярной к касательной в соответствующей точке кривой. Эйлер здесь особо отмечает появление таких произвольных функций. Он тотчас же обобщил вопрос, потребовав, чтобы отрезок нормали представлял собой некоторую функцию Z аргумента z, так что в указанном выше дифференциальном уравнении вместо а появляется Z. В образовании соответствующих поверхностей при этом вместо окружности участвует некоторая другая плоская кривая. Так получаются геометрические образы, ныне называемые «резными поверхностями» («Gesimsfla-chen»). Эйлер возвращался к обоим видам поверхностей еще в Nov. Act. Petr. 1792 (1797; поступило в 1777) и 1794 (1801; поступило в 1778).

Эйлер перенес на пространство также проблему ортогональных траекторий [Mem. Ac. St-Pet., 1815/16 (1820; поступило в 1782)], причем в нескольких примерах ему удалось провести решение полностью. В Mem. Ac. Turin, (2) I (1784/85) Монж довольно общим образом рассмотрел вид дифференциального уравнения с частными производными, соответствующего классу поверхностей, конечное уравнение которых содержит п произвольных функций.

Как видно из заметки, опубликованной впервые в «Посмертных сочинениях» (Opera posthuma, I, Петербург, 1862), Эйлер уже около 1770 нашел общие уравнения, выражающие условия изгибаемости поверхностей, в опубликовании которых выход его работы опередил Гаусс (1828).

Дифференциальная геометрия получила применение и в картографии того времени. Ламберт в своих «Очерках об употреблении математики и ее приложении» (Beytrage zum Gebrauch der Mathematik und deren Anwendung, Berlin, 1772) дал дифференциальные формулы стереографической проекции. Для других видов отображения он лишь ясно разобрал требования общего характера. И здесь новые пути проложил Эйлер в одной работе о представлении шаровой поверхности на плоскости [Act. Ac. Petr., 1777, I (1778)]. Он поставил задачу найти координаты точки плоскости х, у как функции географических долготы t и широты и так, чтобы определяемое ими отображение удовлетворяло некоторым условиям. Затем он показал, что добиться конгруэнтности невозможно, и выдвинул требование, чтобы меридианы и параллельные круги перешли в ортогональные системы кривых, в частности, в систему линий, параллельных осям координат (что применяется в проекции Меркатора). Приведя пример отображения с сохранением площадей, он затем детальнее занялся отображением с сохранением углов. Условием ортогональности градусной сети является

pq+rs=0

где

Кроме того, должны соблюдаться условия

dx=p du+r dt cosu, dy = r du - p dt cosu.

Для интегрирования Эйлер впервые употребил здесь комплексные величины, составив выражение dx + i dy, с тем, чтобы правая часть этого выражения превратилась в произведение. Решение тогда имеет вид ( обозначает здесь символ функции):

x = [s (cost -- i sint)] + [s (cost + i sint)],

iy = [s (cost -- i sint)] - [s (cost + i sint)],

В заметке, непосредственно примыкавшей к этой статье, Эйлер показал, что стереографическая проекция является частным случаем рассмотренного им отображения. Для отображения шара с сохранением размеров площадей Эйлер привел в этой статье только частные решения, именно, для случая, когда градусная сеть переходит в две ортогональные системы кривых. [11]

§3.8. Заслуги Эйлера в преобразовании и дальнейших успехах тригонометрии

Понятно, что столь ярко выраженный аналитический гений, каким являлся Эйлер, раз занявшись вычислительной тригонометрией, должен был значительно продвинуть ее вперед. Повод обратиться к тригонометрии представился ему в уже неоднократно упоминавшемся «Введении в анализ» (1748). В восьмой главе его первого тома Эйлер впервые ввел в анализ угловые функции как числовые величины, с которыми можно производить вычисления, как со всякими другими, так, чтобы впредь они уже не оказывали влияния на размерность выражений. И хотя Эйлер и не определил нигде тригонометрические функции явно как отношения сторон прямоугольного треугольника, но всегда рассматривал их именно так. Если отвлечься от несущественных мелочей, то изложение и символика Эйлера были вполне современными. Уже в одной работе в Coram. Ac. Petr., 1729 (1735) он записал теорему косинусов сферической тригонометрии в виде

cos : ВС = cos : АВ * cos : AC + cos A * sAB * sAC;

целый синус, который все еще употребляло большинство прежних авторов, здесь уже был принят равным 1. Обозначения тригонометрических функций во «Введении» были таковы: sin. A. z или sin. z (A = arcus), cos. A. z или cos. z, tang. z, cot. z и т. д.

В начале названной главы были впервые систематически установлены формулы для sin (z + ), sin (z+) и т. д. Написав:

Эйлер раскрыл скобки и получил таким путем формулу для cosnz; аналогично он нашел формулу для sinnz. Беря п бесконечно большим, a z бесконечно малым, так что cosz=l и sinz=z, он вывел из этих формул бесконечные ряды для синуса и косинуса. Отсюда он получил ряды для синуса, косинуса, тангенса и котангенса , отчасти опубликованные им уже в Comm. Ac. Petr., 1739 (1750). Затем он исчерпывающим образом показал, как можно использовать эти ряды для вычисления тригонометрических таблиц. Позднее в Nov. Comm. Ac. Petr., 1754/55 (1760) он вывел дальнейшие ряды для sinn, cosn, sinm, cosn, следующие по функциям углов, кратных . На связь между показательной и тригонометрическими функциями Эйлер натолкнулся уже в одной работе о рядах, помещенной в Comm. Ac. Petr., 1740 (1750). Соответствующую определяющую формулу для синуса он дал в Misc. Berol., 1743, но доказаны были формулы для синуса и косинуса только во «Введении». О результатах Эйлер, очевидно, ничего не знал. Формулы

cos х = (eix + e-ix) и sin x = (eix -- e-ix)

он получил во «Введении» из выражений

и

полагая п = . К этому он присоединил еще формулу

Определение sin(x+iy) и cos(x+iy) он впервые дал в Mem. Ac. Berl., 1749.

Суммирование рядов синусов и косинусов, аргументы которых растут в арифметической прогрессии, Эйлер произвел уже в Misc. Berol., 1748. Во «Введении» он вновь вернулся к этому вопросу с более общей точки зрения. Позднее (Opuscul. anal., Петербург, 1783) он занялся аналогичными рядами, аргументы которых образуют геометрическую прогрессию. Представлением тригонометрических функций в виде произведений Эйлер начал заниматься уже в Comm. Ac. Petr., 1734/35 (1740), где разложил в бесконечное произведение синус. То же самое он провел для синуса и косинуса в Comm. Ac. Petr., 1740 (1750) и Misc. Berol., 1743. Все это вместе с некоторыми дополнениями было включено во «Введение», в 14-й главе которого он также детально занялся вопросом об умножении и делении углов, т. е. о тригонометрических функциях кратных углов. Мы указывали в первой части, что в этих разнообразных исследованиях Эйлер действовал более творчески, нежели критически. Это столь глубоко коренилось в его натуре, что он оставил без внимания возражения, сделанные ему главным образом Николаем I Бернулли уже в 1742 и 1743. Эйлер продолжал производить вычисления над любыми бесконечными рядами, распространял теоремы о конечных многочленах на бесконечные и придавал любые значения индексу п, в начале доказательства считавшемуся целочисленным. Несмотря на это, получаемые им результаты обычно бывали справедливы, хотя в некоторых случаях он пришел и к ошибочным выводам, как, например, в упоминавшейся статье в Nov. Comm. Ac. Petr., 1754/55 (1760).

Во втором томе «Введения» (глава 22-я) Эйлер применил к решению трансцендентных уравнений, вроде s=cos s или s=sin 2s и т. п., правило ложного положения. Как сообщает он сам, он придумал подобные задачи с целью посмотреть, нельзя ли приблизиться таким путем к квадратуре круга. Позднее, когда Ламберт уже доказал иррациональность , Эйлер вновь занялся подобными рассмотрениями, подчеркивая, что работа Ламберта отнюдь еще не доказала невозможность квадратуры круга.

Прежде чем перейти к заслугам Эйлера в сферической тригонометрии, упомянем еще о двух тригонометрических разложениях, лежащих несколько в стороне. Эйлер нашел их, развивая предложенный Декартом и затем неоднократно открывавшийся вновь способ построения окружности данной длины (Декарт, Opuscula posthuma, Амстердам, 1701, ср. его Oeuvres, т. X). Это бесконечный ряд

tg + tg +tg +...= - 2ctg2

[ср. Nov. Comm. Ac. Petr., 1760/61 (1763)] и бесконечное произведение

cos coscos... = ,

которое Эйлер другим путем вывел уже в Comm. Ac. Petr., 1737 (1744).

Сферической тригонометрией Эйлер специально занялся в двух больших статьях, подойдя при этом к ней с различных точек зрения. В первой, помещенной в Mem. Ac. Berl., 1753 (1755) он совершенно общим образом построил сферическую тригонометрию как геометрию треугольников, составленных на поверхности сферы линиями кратчайшего расстояния. Эйлер исходил из прямоугольного треугольника, обозначив катет АР через х, катет РМ через у, гипотенузу AM через s [рис. 4]. Если О -- полюс большого круга (экватора), на котором лежит АР, а Ор -- меридиан, бесконечно близкий к ОР, то

Рис. 4.

Mm = ds, mn = dy, Pp = dx

и линия Мп, лежащая на параллельном круге широты у, равна dxcosy, так что

ds = .

Далее, Эйлер искал условия, при которых интеграл этого элемента дуги будет иметь минимальное значение, и получил, таким образом, 10 уравнений, возникающих из правила Непера. Здесь в первый раз появились обозначения, которые мы теперь склонны считать само собой разумеющимися и отсутствие которых часто придавало такой неудобный вид прежним работам. Мы имеем в виду обозначение трех сторон буквами а, b, с, а противолежащих вершин и углов треугольника буквами А, В, С. То, что мы обозначаем последние по большей части буквами а, , , конечно, менее существенно. Греческие буквы были введены лишь в XIX столетии, хотя иногда а, , , применялись уже А. Кестнером в его «Основаниях арифметики, геометрии и тригонометрии» (Геттинген, 1759; 6-е изд. 1800). Новые обозначения позволили Эйлеру записать свои десять уравнений вполне в современном виде. Затем он получил из них шесть различных основных уравнений для прямоугольного треугольника. Соответствующим образом Эйлер поступил и в случае общего сферического треугольника. Определив минимум одной из сторон, он прежде всего нашел пять фундаментальных уравнений, из которых затем вывел теорему синусов, обе теоремы косинусов и так называемое правило котангенса (впервые встречающееся у Виета); последнее появилось у него в форме

sin a tg С -- sin В tg с = cos a cos B tg C tgc,

переходящей в употребляемую ныне при делении на tgCtgc. Эйлер записывал каждую теорему в трех видах, которые получаются друг из друга циклической перестановкой, хотя сам Эйлер ею не пользовался. О полярном треугольнике Эйлер не упоминал, и вообще, с точки зрения полноты, в статье имелось несколько малозначительных пробелов. Зато применения и преобразования фундаментальных теорем были в высшей степени богатые.

Среди прочего материала здесь имелись все формулы для половинных углов, правда, без сокращенных обозначений полусумм сторон и углов, затем четыре аналогии Непера--Бригса, употребление вспомогательного угла в теореме косинусов, причем последняя приводилась еще в новой форме:

cos a=

сообщалась и формула, полярная с приведенной.

Прибавим, что вслед за этой статьей Эйлер в том же томе Mem. Ac. Berl. поместил работу, подробно излагавшую тригонометрию на поверхности сфероида, особо учитывая вопросы, связанные с измерением земли. Аналогичные исследования были произведены позднее дю-Сежуром [Mem. Ac. Paris., 1778 (1781)].

Во второй статье по сферической тригонометрии [Comm. Ac. Petr., 1779 (1782)] Эйлер принял для построения системы ее формул элементарную основу. Он исходил здесь из трехгранника, который пересекал соответствующими плоскостями, с тем, чтобы после применить теоремы плоской тригонометрии (подобно Копернику). Он вывел, таким образом, теорему синусов, теорему косинусов для сторон и новую формулу, связывающую пять элементов:

cos A sin с = cos a sin b -- sin a cos b cos С,

отметив, что эти три формулы содержат в себе всю сферическую тригонометрию. Полученное здесь третье уравнение Эйлер подверг неоднократным преобразованиям. Он вывел из него так называемую формулу котангенсов, теорему косинусов для углов и, с помощью теоремы синусов, полярную с ней формулу. Лишь после этого он ввел полярный треугольник и объяснил его способ применения, привел, частично выведя их по-новому, логарифмические формулы и с полным правом заявил, что его статья дает полное (можем прибавить: первое полное) изложение системы сферической тригонометрии. [11]

ГЛАВА IV. Влияние Леонарда Эйлера на развитие теории чисел

С конца XVII до тридцатых годов XVIII столетия мы не можем назвать какого-либо замечательного теоретико-числового открытия. Математики были слишком заняты разработкой возникших недавно исчисления бесконечно малых и аналитической геометрии. Только Эйлер, распространивший свою огромную активность на все области математики, уделил внимание этой отвлеченнейшей ее ветви и даже с особенной любовью занимался ею на протяжении всей жизни. Из многочисленных работ Эйлера мы, разумеется, можем выделить только важнейшие результаты и методы, не вдаваясь в частности.

§4.1. Целочисленное решение неопределенных уравнений

В целом ряде статей Эйлер занялся целочисленным решением неопределенных уравнений. Уже в раннем периоде своей деятельности он нашел упомянутый выше способ решений уравнений первой степени с двумя неизвестными [Comm. Ac. Petr., 1734/35 (1740)], который мы встретили у Ролля. В «Полном введении в алгебру» (1768/69) Эйлер применил тот же прием к линейным уравнениям с несколькими неизвестными. К последним он возвратился затем в статье, опубликованной уже после его смерти во втором томе «Аналитических сочинений» (Opuscula analytica, 1785). Лагранж в Mem. Ac. BerL, 1768 (1770) присоединил к методу Эйлера еще свой известный способ цепных дробей, весьма близкий, впрочем, к способу Ваше. Еще ранее Эйлер показал [Comm. Ac. Petr., 1732/33 (1738)], как получается бесконечно много целочисленных решений уравнения ах2 + bx + с =y2, если известно одно такое решение. Несложное преобразование этого уравнения немедленно приводит задачу к более простой, именно к определению целочисленных решений уравнения A+By2=z2. В Nov. Comm. Ac. Petr. за 1762/63 (1764) и 1773 (1774) Эйлер сумел также дать правила нахождения одного такого решения при положительном В. Однако его исследования вскоре были отодвинуты на задний план результатами Лагранжа, который привел к виду А+Вt2= и2 общее уравнение

Страницы: 1, 2, 3, 4, 5, 6