скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Водоснабжение города и промышленных предприятий скачать рефераты

Из приведенной таблицы видно, что наибольший остаток воды в баке приходится на 15-16 ч. и составляет 2,5% Qсут.мах, следовательно,

Противопожарный запас воды Wпож на 10-минутную продолжительность тушения одного наружнего и одного внутреннего пожаров:

где qпож.нар - пожарный расход на тушение одного наружнего пожара в городе, 40л/с;

qпож.внут - расход внутри здания из пожарного крана, принято ранее 5 л/с;

Полная вместимость бака водонапорной башни равна:

Wб = Wрег+ Wпож.= 1088 м3

К установке принимаем типовую железобитонную башню, вместимостью бакаа которой - 1100 м3.

Размеры бака принимаем с таким расчетом, чтобы отношения высоты слоя воды к диаметру было в пределах 0,7. Тогда диаметр бака равен:

Д = 1,253v Wб = 1,253v 1088 = 13 м, а высота слоя воды Н = 9 м

7.3. Определение вместимости резервуаров чистой воды

Полная вместимость резервуаров чистой воды (в м3) определяется по вормуле:

Wр=Wрег.р+Wпож.р+Wф

где Wрег.р - регулирующий запас воды;

Wпож.р - противопожарный запас;

Wф - запас воды на промывку фильтровпринимаем равным 2121 м3 ,согластно расчету очистных сооружений;

Результаты расчетов Wрег.р приведены в табл. 7.2.

Вместимость резервуара чистой воды

Таблица 7.2

Часы суток

Подача насосами 1-го подъема, %

Подача насосами 2-го подъема, %

Поступление воды в РЧВ

Расход воды из РЧВ

Остаток воды в РЧВ

1

2

3

4

5

6

0-1

4,17

2,6

1,57

1,57

1-2

4,17

2,6

1,57

3,14

2-3

4,17

2,6

1,57

4,71

3-4

4,17

2,6

1,57

6,28

4-5

4,17

2,6

1,57

7,85

5-6

4,17

4,58

0,41

7,44

6-7

4,17

4,58

0,41

7,03

7-8

4,17

4,58

0,41

6,62

8-9

4,17

4,58

0,41

6,21

9-10

4,17

4,58

0,41

5,8

10-11

4,17

4,58

0,41

5,39

11-12

4,17

4,58

0,41

4,98

12-13

4,17

4,58

0,41

4,57

13-14

4,17

4,58

0,41

4,16

14-15

4,17

4,58

0,41

3,75

15-16

4,17

4,58

0,41

3,34

16-17

4,17

4,58

0,41

2,93

17-18

4,17

4,58

0,41

2,52

18-19

4,17

4,58

0,41

2,11

19-20

4,17

4,58

0,41

1,7

20-21

4,17

4,58

0,41

1,29

21-22

4,17

4,58

0,41

0,82

22-23

4,17

4,58

0,41

0,41

23-24

4,17

4,58

0,41

0.00

Из таблицы видно, что наибольший остаток воды в РЧВ приходится на период с 23 до 24 часов и составляет 7,85 % Qсут.мах., следовательно:

Неприкоснавенный противопожерный запас воды определяем из расчета подачи воды на тушение пожара в течение трехчасового периода наибольшего водопотребления по формуле:

где Qпож - расход воды на тушение наружных плжаров, Qпож = 135 л/с;

3* Qч.мах - расход воды на три смежных часа наибольшего водопотребления, т.е. с 20 до 22ч.

3* Qч.ср - приток воды в резервуар принимаем равным трем среднечасовым, т.е. 4,17% Qсут.мах.*3

Запас воды на собственные нужды очистных сооружений может быть принят в размере 5-8% от Qсут.мах., следовательно:

Wф =42421*5/100=2121 м3

Полная вместимость резервуара чистой воды:

Wр = 3030+2393+2121=8060 м3

Принимаем два типовых железобетонных резервуара вместимостью 4030 м3 каждый, с размерами в плане 30X30м, высота слоя воды - 4,5 м.

7.4. Определение напора насосов I подъема

Напор насосов I подъема определяется по формуле:

Н = Нг + hв + hн + hl+ hм +1=16+1+2+2,49+0,249+1=22,8 м

где Нг - геометрическая высота подъема воды насосами, м:

Нг = Zос - Zвз=88-72=16 м;

где Zос - уровень воды в смесителе очистной станции, м;

Zвз - минимальный уровень воды в береговом колодце, водозабора м;

hв - потери напора во всасывающих водоводах и во всасывающих коммуникациях насосной станции, принимаются равными 1,0 м [4, п.14.3];

hн - потери напора в напорных коммуникациях внутри насосной станции, принимаются равными 2 м [4, п.14.3];

1 - запас напора на излив воды из трубопроводов, м;

Потери напора в напорных водоводах (по длине) определяются по формуле:

hL = i * L=2,49 м

где i - пьезометрический уклон, принимается при диаметре напорного водовода d=500 мм и расходе воды Q=270 л/с;

L - длина водовода, 600м;

Потери напора на местные сопротивления в напорных водоводах принимаются в размере 10% от потерь напора по длине:

hм = 0,1 * hL =0,1*2,49=0,249 м

Принимаются два рабочих и два резервных насоса марки Д 1250-65 , n = 980 об/мин. Характеристика насосов: Dр.к =460 мм;

?hg = 5 м;

N = 80 кВт;

h = 26 м;

8.5. Напор насосов II подъема.

Полный напор насосов определяется по формуле:

Н = (Zвб - Zрчв) + Нвб + Нб + hi + hн,= (107,3-80,75)+34+9+1,5+5,22+2=78,27 м

где Zвб - отметка поверхности земли у водонапорной башни, м;

Zрчв - отметка минимального уровня воды в резервуарах чистой воды при сохранении неприкосновенного запаса воды, м;

Нвб - высота водонапорной башни, м;

Нб - максимальная высота слоя воды в баке водонапорной башни, м;

hi - потери напора во всасывающих водоводах и коммуникациях насосной станции, соответствующих подаче насосной станцией в период максимального водоразбора, принимаются равными 1,5 м [4];

hн - потери напора в водоводах от насосной станции до водонапорной башни, определены в гл.7, и в напорных коммуникациях внутри насосной станции при расходах, соответствующих подаче насоса в период максимального водоразбора, принимаются равными 2 м [4, п.14.3].

В соответствии с [1] работа насосной станции II подъема должна быть проверена на подачу воды при тушении пожара.

Требуемый напор насосов в период тушения пожаров определяется по формуле:

Нп = Нгп + hвп + hнп + Нсв.п= (141,62-78,25)+1,5+2+9,36+10=86,23 м

где Нгп - геометрическая высота подъема воды при пожаротушении, т.е. разность отметок земли в расчетной (диктующей) точке пожара и минимального уровня воды в резервуарах чистой воды (отметка дна), м;

hвп - потери напора во всасывающих водоводах и коммуникациях насосной станции при пожаротушении, принимаются равными 1,5 м [4, п.14.3];

hнп - потери напора в напорных коммуникациях внутри насосной станции, принимаются равными 2 м, и по пути от насосной станции до расчетной точки (в водоводах и сетях) при пожаротушении, определены в гл.7;

Для обеспечения подачи расчетных расходов воды принимаются в часы максимального водопотребления два рабочих и два резервных насоса.

Принимаются насосы марки Д 1250-125 , n = 1450 об/мин .

Характеристика насосов: Dр.к =570 мм;

?hg = 5 м;

N = 400 кВт;

h = 110 м;

Глава 8. Автоматизация технологического процесса.

Автоматизация процесса коагулирования воды.

Одним из первых этапов процесса очистки воды является коагулирование. Иногда одновременно с коагулированием устраняется излишняя жёсткость воды путём подщелачевания её известью. В воду могут вводиться и другие реагенты (твёрдые, жидкие и газообразные) для устранения излишнего количества солей железа, марганца и кремния, а также для устранения привкусов и запахов.

В установках коагулирования воды автоматизируется управление механизмами внутристанционного транспортирования, дробления и дозирования реагентов. Дозирование реагентов производится в сухом виде или в виде водных растворов и суспензий.

Механизация и автоматизация разгрузки и внутристанционного транспортирования химических реагентов обеспечивает бесперебойную и более точную подачу реагентов, от чего зависит качество очистки воды; упрощает эксплуатацию сооружений; сокращают численность обслуживающего персонала; устраняют пыль в рабочих помещениях станции; снижают потери реагентов. В последние годы получает внедрение мокрое транспортирование коагулянта, значительно упрощающее автоматизацию реагентного хозяйства на очистных станциях.

При использовании на станциях сухого коагулянта его дозирование может осуществляться в сухом виде или после предварительного растворения в баках. Дозаторы (иногда их называют питателями) сухого коагулянта бывают объёмные и скоростные. Объёмные отмеривают равные порции коагулянта и регулируют число порций, вводимых в воду в единицы времени. Скоростные подают измельчённый коагулянт непрерывным потоком с заданной скоростью.

Сухое дозирование коагулянта не получило широкого внедрения, на водопроводных станциях обычно применяется мокрое дозирование. В этом

случае грубоизмельчённый коагулянт загружается в растворные баки, где получается раствор примерно 20%-ной крепости. Дальше в расходных баках крепость раствора доводится примерно до 10%, и в таком виде он поступает в дозирующее устройство.

Действие автоматических устройств для мокрого пропорционального дозирования реагентов в точном соответствии с количеством обрабатываемой воды может быть основано на изменении площади отверстия, через которое поступает раствор, пропорционально количеству обрабатываемой воды; на изменении напора, под которым вытекает раствор из какого-либо отверстия, пропорционально количеству воды; на объёмном отмеривании; на объёмном вытеснении. На многих водопроводных станциях построены установки для механизации и автоматизации загрузки, растворения и мокрого дозирования коагулянта, в основу которых положен автоматический дозатор системы Чейшвили-Крымского.

В установке принята периодическая загрузка баков сухим коагулянтом. При колебании концентрации раствора в определённых заданных пределах периодическая загрузка даёт наиболее рациональное решение. Одновременная загрузка коагулянта в баки, ёмкость которых рассчитана на суточный расход, требует громоздких сооружений и значительного расхода энергии на перемешивание раствора. Непрерывная загрузка коагулянта элеватором неприемлима, так как производительность элеватора не остаётся постоянной при различной крупности сухого коагулянта. Даже небольшое несоответствие между производительностью элеватора и расходом коагулянта в растворённом состоянии приведёт или к переполнению бака сухим коагулянтом, или к чрезмерному понижению концентрации.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18