скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Тест-системы для индикации ионов тяжёлых металлов в объектах окружающей среды скачать рефераты

Правильность тест-методов обычно проверяют сравнением их результатов с результатами, полученными «инструментальными» методами. Это, конечно, делается при разработке тест-методов. Многие тест-системы не являются универсальными и предназначены для определения компонентов только в определённых объектах.

Химия тест-методов основана главным образом на цветных реакциях, например реакциях комплексообразования или окисления - восстановления. «Ноу хау» разработчиков и производителей тест-систем сосредоточивается на подборе рациональной комбинации реагентов, стабилизации смесей реагентов и растворов, на уменьшение мешающих влияний путём добавления маскирующих агентов. Главная цель - разработать тест, который был бы экспрессным и лёгким в осуществлении.

Помимо реакций, приводящих к появлению окраски, используют также химические взаимодействия, результатом которых является появление люминесценции.

Эффект измеряют не только визуально, но и с помощью простых в использовании портативных приборов. Особенно часто измеряют пропускание света, диффузное отражение или люминесценцию.

Требования, предъявляемые к реакциям, которые используют в тест-методах, состоят в следующем:

1. Селективность по отношению к обнаруживаемым (определяемым) компонентам или их сумме - в зависимости от поставленной задачи;

2. Достаточно высокая чувствительность. Например, при анализе объектов окружающей среды предел обнаружения обычно должен быть ниже предельно допустимой концентрации нужного компонента или близок к ней;

3. При использовании цветных реакций - высокая контрастность и высокая скорость цветового перехода в присутствии обнаруживаемого или определяемого вещества;

4. Возможность ввести реагенты в форме, пригодной для использования в тест-методах, например привить, с образованием ковалентных связей, на поверхности силикагеля или целлюлозы;

5. Устойчивость реагентов при хранении и достаточная устойчивость аналитического эффекта (окраски, люминесценции и т.д.) во времени.

Для создания тест-методов и тест-средств используют химические реакции почти всех основных типов:

1) кислотно-основные;

2) окислительно-восстановительные;

3) комплексообразования;

4) разные реакции органического синтеза.

Значительную роль в тест-методах играют занимающие несколько особое положение каталитические реакции, преимущественно с использованием ферментов. Соответственно, используются реагенты различного механизма действия и различной природы.

Кислотно-основные реакции имеют большое значение при определении величины рН. Определение концентрации водородных ионов при анализе природных и сточных вод, технологических растворов, биологических жидкостей - одна из самых массовых аналитических операций. Несмотря на развитие потенциометрических методов определения рН, определение кислотности с помощью кислотно-основных индикаторных бумаг остаётся весьма распространённой процедурой. Этот способ имеет ряд достоинств: простота анализа, экспрессность, отсутствие необходимости использовать аппаратуру и связанная с этим дешевизна определений, возможность проводить анализ практически в любом месте.

Окислительно - восстановительные реакции также весьма распространены. При использовании твёрдых реагентов существенно знать, изменится ли окислительно-восстановительный потенциал при иммобилизации реагентов на твёрдой матрице. Здесь нет общего решения, многое зависит от способа иммобилизации, природы матрицы и т.д. Примером окислительно-восстановительных реакций могут быть реакции восстановления золота и серебра солью Мора в присутствии комплексообразующих веществ.

Реакции комплексообразования широко используют в многочисленных тест-методах на ионы металлов, реже - в методах определения органических веществ. Специфических реакций образования комплексных соединений почти нет, поэтому во многих тест-средствах предусматривается регулирование рН, использование маскирующих веществ и другие способы повышения селективности. Одним из широко используемых реагентов является дитизон. [2] Он образует окрашенные комплексы со многими ионами металлов; по устойчивости их можно расположить в ряд:

Ag>Hg>Pd>Pt>Au>Cu>Bi>In>Sn>Zn>Cd>Co>Pb>Ni>Fe(II)>Mg>Tl(I). Хотя дитизон является реагентом на 30 катионов, можно, используя зависимость реакции от рН, маскирующие реагенты и реакции вытеснения, проводить довольно селективное определение. Например, в сочетании с тиомочевинной и ацетатом натрия дитизон использован при получении индикаторных бумаг для определения суммы тяжёлых металлов, предел обнаружения 0,5 мг/л катиона.

Основными путями применения аналитических реагентов в тест-системах являются:

1) их используют в виде заранее приготовленных и фасованных растворов;

2) они иммобилизованы на твёрдую матрицу (носитель);

3) их используют в форме заранее взвешенных и упакованных доз в виде порошков, шариков, таблеток и т.д.

При использовании готовых растворов изготовители тест-средств помещают их в ампулы, капельницы, закрытые пробирки. Реагенты в таких растворах должны быть устойчивыми в течении длительного времени. Концентрация реагентов соответствует ожидаемой концентрации определяемого компонента; часто в набор входят растворы нескольких концентраций. Иногда раствор содержит не только сам реагент, но также другие необходимые вещества.

Помимо собственно аналитических реагентов в тест-средства обычно вводят и другие вещества - восстановители или окислители, буферы, маскирующие агенты, смачивающие соединения, закрепители и др.

Например, один из вариантов реактивных бумаг для определения меди в воде готовят из фильтровальной бумаги, которую вначале пропитывают растворов восстановителя (гидрохлорид гидроксиламина, аскорбиновая кислота или их смесь) для восстановления меди (II) до меди (I), какую-либо слабую кислоту, затем после сушки обрабатывают органическим раствором аналитического реагента на медь (I) (купроин, неокупроин, батокупроин) вместе с эмульгатором. Можно вводить ещё смеси Na2B4O7 - H3BO3 или H2CO3 - NH3 , которые увеличивают чувствительность определения меди [1].

Вероятно, несколько большее распространение имеют тест-средства, приготовленные на твёрдом носителе - на бумаге, ткани, на синтетических органических полимерах, силикагеле и др. Природа носителя, способ его приготовления и способ иммобилизации реагентов на нём имеют весьма существенное значение. Реагент иммобилизуют адсорбцией, испарением растворителя после импрегнирования раствором реагента в этом растворителе, другими физическими методами или химической - ковалентной - иммобилизацией. Относительно слабая фиксация «физически» закреплённых реагентов на поверхности носителя и, как следствие этого, частичное смывание его при контакте с раствором являются основным недостатком таких тест-систем. Увеличения прочности связывания реагента с носителем добиваются образованием химических связей между ними (химическая иммобилизация). Однако «физическое» закрепление, как правило, намного проще, поэтому оно весьма широко распространено.

Одними из наиболее распространенных неорганических полимерных носителей реагентов являются силикагели.. Их модифицирую различными реагентами и часто наполняют ими тест-трубки для анализа воздуха. Например, для определения метанола и этанола в воздухе, химического потребления кислорода в воле используют оксид хрома (VI) в среде серной и фосфорной кислот [3,4]; для определения SOi в воздухе использован бромкрезоловый зеленый [5].

Силикагель (силохром С-120) в виде таблеток с иммобилизованным 4-(2-пиридилазо)резорцином (ПАР), 4-(2-тиазолилазо)резорцином (ТАР) или 1-(2-пиридилазо)-2-нафтолом (ПАН) предложен для определения Со, Hg, Pd и U с нижней границей определяемых содержаний 0,003-0,1 мг/л [6,7].

1.2. Средства и приёмы анализа различных объектов окружающей среды с использованием тест-систем

Основными средствами тестирования воды, водных растворов и других жидких сред являются бумажные индикаторные полоски, индикаторные трубки, таблетки и простейшие устройства для тестирования. Однако известны и другие средства. Применяемые процедуры зависят, естественно, от типа средств.

Разнообразием способов изготовления тест-устройств и определения концентрации с их помощью отличаются тест-системы, в которых аналитический реагент иммобилизован на твёрдых носителях, особенно на целлюлозных бумагах. Содержание компонентов определяют по тону или интенсивности окраски, возникающей после контакта носителя с исследуемой жидкостью, путём сравнения её с цветной шкалой, либо по площади окрашенной или обесцвеченной зон индикаторных бумаг.

Индикаторные порошки представляют собой либо смеси необходимых реагентов для определения веществ, либо сыпучие материалы, на которых иммобилизованы реагенты. Они могут быть помещены в приборы для тестирования, представленные на рисунке 1. В первом случае концентрацию определяют по интенсивности окраски жидкости после внесения индикаторного порошка и его растворения в анализируемом растворе. Во втором случае индикаторный порошок вносят в пробу, перемешивают и определяют концентрацию по интенсивности окраски порошка [8].

Рисунок 1 - Приборы для тест-определений с использованием индикаторных порошков

1-колориметрическая трубка

2- анализируемый раствор

3- индикаторный порошок

Использование индикаторных порошков позволяет сочетать сорбционное концентрирование определяемого компонента из разбавленных растворов с его визуальным определением на поверхности. Высокая прозрачность индикаторных порошков обеспечивает высокую чувствительность определения. Установлено, что с увеличением удельной площади поверхности чувствительность определения возрастает.

Стеклянные индикаторные трубки (рисунок 2) заполняют носителем с закрепленным на нем реагентом. Через трубку пропускают определенный объем анализируемой жидкости; это можно делать с помощью шприца, за счет гидростатиче-ского давления или за счет капиллярных сил, опустив трубку в анали-зируемую жидкость и подождав, когда жидкость поднимется до конца заполняющего трубку слоя сорбента. В результате взаимодействия между закрепленным реагентом и аналитом образуется соединение, имеющее окраску, отличную от окраски слоя сорбента. Длина окрашенной зоны зависит от концентрации аналита.

Рисунок 2 - Способы определения концентрации с помощью индикаторных трубок

а - с принудительным пропусканием анализируемой жидкости;

б - методом погружения и поднятия жидкости за счет капиллярных сил;

в - методом погружения с исполь-зованием гидростатического давления:

1 -- анализируемая жидкость;

2 -- индикаторная трубка;

3 -- окрашенная зона сорбента.

Объем анализируемого раствора, пропущенного через индикаторную трубку, определяют по формуле [9,10]:

, где

-- длина и радиус капилляра с индикаторным порошком;-- длина и радиус дополнительной пластиковой трубки.

Относительная длина окрашенной зоны (R) индикаторного порошка зависит от объема пропущенного анализируемого раствора:

,

где S - длина окрашенной зоны тест-трубки.

Для получения индикаторных порошков использованы [11,12,13] нековалентная иммобилизация аналитических реагентов на обращенно-фазовых силикагелях и их включение в ксерогели кремниевой кислоты. Сформулированы требования к аналитическим реагентам, пригодным для использования в методе индикаторных трубок: контрастность реакции, высокая скорость взаимодействия с определяемым компонентом, прочное удерживание реагента и продукта реакции индикаторным порошком, чувствительность и селективность. Изучено влияние режима ввода анализируемого раствора в индикаторную трубку, физико-химических характеристик индикаторных порошков, длины и внутреннего диаметра трубок, рН раствора на длину окрашенной зоны.

Таким образом, использование индикаторных порошков и трубок, как техническое средство при создании тест-систем может упростить и удешевить химический анализ. В этой связи является актуальным разработка новых тест-методов анализа, отличающихся селективностью, чувствительностью и экспрессностью.

В качестве объектов окружающей среды рассматриваются вода и почва. Существует множество приёмов тестирования вод различного происхождения и поэтому с разным содержанием загрязнителей - поверхностных пресных, морских, питьевых, подземных различной минерализации, сточных вод разнообразных производств. При выборе реакции для тестирования и тест средства необходимо учитывать предел обнаружения, а также возможное содержание других компонентов. При анализе почв определяют только загрязняющие компоненты. Обычно используют вытяжки из почв растворами, выбранными в соответствии с поставленной задачей тестирования.

Быстро оценить качество исследуемого объекта позволяют обобщённые показатели, такие как рН, кислотность, щелочность, суммарное определение тяжёлых металлов, общее содержание углерода и др. Так в работах Амелина В.Г. [14] описана процедура изготовления индикаторных бумаг для определения жёсткости воды, прежде всего обусловленную наличием кальция и магния, по длине окрашенной зоны тест-полосы, либо по интенсивности окраски индикаторных бумаг после пропускания через них определённого объёма исследуемой жидкости. Основой такой тест-системы является целлюлозная бумага, пропитанная водными растворами 0,5-0,8 г/л эриохромового чёрного Т или эриохромового сине-чёрного Р, 5-8 г/л тетрабората натрия и 0,3-0,4 г/л комплексоната магния, который вводят для более чёткого перехода окрасок указанных реагентов в присутствии ионов кальция. Ионы щелочноземельных металлов изменяют цвет бумаги из синей в вишнёвую. Образующиеся комплексы ионов кальция и магния с ЭХЧТ хорошо адсорбируются на целлюлозной бумаге и не вымываются при пропускании через них до 20 мл воды. Время анализа составляет 10-15 мин. Диапазоны определяемых суммарных содержаний ионов щелочноземельных металлов составляют 0,05-40 мМ, длина окрашенной зоны 1-70 мм.

Halamex E., Prikryl F. [15] предложили метод суммарного определения тяжёлых металлов [Cu (II), Co, Ni, Cd, Zn, Pb, Mn (II)] с помощью индикаторных трубок в питьевых, сточных, природных водах и атмосферных осадках. В основу определения положена цветная реакция взаимодействия ионов металлов с 1-(2-пиридилазо)-2-нафтолом, нековалентно иммобилизованным гидрофобизованном силикагеле. Тест-средство представляет собой стеклянную трубку (длина -50 мм, внутренний диаметр- 2 мм), заполненную индикаторным порошком. Измеряют длину окрашенной в фиолетовый цвет зоны и определяют содержание металлов с помощью шкалы длин или по уравнению градуировочного графика. Диапазон определяемых содержаний составляет 0,01-1мМ. Воспроизводимость и правильность методики проверена методом «введено-найдено» и анализом стандартных растворов суммы металлов.

Разработаны тесты [22], основанные на реакции серебра с сульфидом кадмия. В России выпускают реактивную бумагу «ИС-1» для полуколичественного определения серебра в фиксажных растворах в диапазоне 0,5-10 г/л. Для фиксажных растворов запатентованы способы определения серебра в диапазоне 0-10 г/л, основанные на образовании чёрного Ag2S на фильтровальной бумаге [23,24]. Для определения серебра в природных водах использована индикаторная бумага, импергированная дитизонатом меди. После пропускания с помощью тест-устройства 20 мл нализируемого раствора через индикаторную бумагу интенсивность окраски реакционной зоны сравнивают с цветной шкалой в диапазоне 0,01-2 мг/л.

Все известные тест-методы определения мышьяка основаны на выделении его из воды или почвенных вытяжек в виде арсина с использованием цинка и сульфата меди. Мышьяк (V) восстанавливают до мышьяка (III) в кислой среде иодидом калия. При действии газообразного AsH3 на фильтровальную бумагу, пропитанную нитратом серебра или бромидом ртути, она окрашивается в жёлтый или коричневый цвет [25]. Содержание мышьяка определяют по цветной шкале в диапазоне 0,05-3 мг/л.

Страницы: 1, 2, 3, 4