скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Щелочноземельные металлы скачать рефераты

Химические свойства щелочноземельных металлов и их соединений.

Свежая поверхность Э быстро темнеет вследствие образования оксидной пленки. Пленка эта относительно плотна - с течением времени весь металл медленно окисляется. Пленка состоит из ЭО, а также ЭО2 и Э3N2. Нормальные электродные потенциалы реакций Э-2е = Э2+ равны =-2,84В(Са), =-2,89(Sr). Э очень активные элементы: растворяются в воде и кислотах, вытесняют большинство металлов из их оксидов, галогенидов, сульфидов. Первично (200-300оС) кальций взаимодействует с водяным паром по схеме: 2Са + Н2О = СаО + СаН2. Вторичные реакции имеют вид: CаН2 + 2Н2О = Са(ОН)2 + 2Н2 и СаО + Н2О = Са(ОН)2. В крепкой серной кислоте Э почти не растворяются ввиду образования пленки из малорастворимых ЭSO4. С разбавленными минеральными кислотами Э реагируют бурно с выделением водорода. Кальций при нагревании выше 800оС с метаном реагирует по схеме: 3Cа + СН4 = СаН2 + СаС2. Э при нагревании реагируют с водородом, с серой и с газообразным аммиаком. По химическим свойствам радий ближе всего к Ва, но он более активен. При комнатной температуре он заметно соединяется с кислородом и азотом воздуха. В общем, его химические свойства немного более выражены чем у его аналогов. Все соединения радия медленно разлагаются под действием собственного излучения, приобретая при этом желто-ватую или коричневую окраску. Соединения радия обладают свойством автолюминесценции. В результате радиоактивного распада 1 г Ra каждый час выделяет 553,7 Дж тепла. Поэтому температура радия и его соединений всегда выше температуры окружающей среды на 1,5 град. Также известно, что 1 г радия в сутки выделяет 1 мм3 радона(226Ra = 222Rn + 4He), на чем основано его применение как источника радона для радоновых ванн.

Гидриды Э - белые, кристаллические солеобразные вещества. Их получают непосредственно из элементов при нагревании. Температуры начала реакции Э + Н2 = ЭН2 равны 250 оС (Са), 200 оС (Sr), 150 оС (Ва). Термическая диссоциация ЭН2 начинается при 600оС. В атмосфере водорода СаН2 не разлагается при температуре плавления (816оС). В отсутствии влаги гидриды щелочноземельных металлов устойчивы на воздухе при обычной температуре. Они не реагируют с галогенами. Однако при нагревании химическая активность ЭН2 возрастает. Они способны восстанавливать оксиды до металлов(W, Nb, Ti, Се, Zr, Ta), например 2СаН2 + ТiO2 = 2CaO + 2H2 + Ti. Реакция СаН2 с Al2O3 идет при 750оС: 3СаН2 + Al2O3 = 3СаО + 3Н2 + 2Аl, и затем: СаН2 + 2Al = CaAl2 + H2. С азотом СаН2 при 600оС реагирует по схеме: 3СаН2 + N2 = Ca3N2 +3H2. При поджигании ЭН2 они медленно сгорают: ЭН2 + О2 = Н2О + СаО. В смеси с твердыми окислителями взрывоопасны. При действии воды на ЭН2 выделяется гидроокись и водород. Эта реакция сильно экзотермична: смоченный водой на воздухе ЭН2 самовоспламеняется. С кислотами ЭН2 реагирует, например по схеме: 2HCl + CaH2 = CaCl2 + 2H2. ЭН2 применяют для получения чистого водорода, а также для определения следов воды в органических растворителях. Нитриды Э представляют собой бесцветные тугоплавкие вещества. Они получаются непосредственно из элементов при повышенной температуре. Водой они разлагаются по схеме: Э3N2 + 6H2O = 3Э(ОН)2 + 2NH3. Э3N2 реагируют при нагревании с СО по схеме: Э3N2 + 3СО = 3ЭО + N2 + 3C. Процессы которые происходят при нагревании Э3N2 с углем выглядят так:

Э3N2 + 5С = ЭCN2 + 2ЭС2; (Э = Са, Sr); Ва3N2 + 6С = Ва(СN)2 + 2ВаC2;

Нитрид стронция реагирует с HCl, давая хлориды Sr и аммония. Фосфиды Э3Р2 образуются непосредственно из элементов или прокаливанием трехзамещенных фосфатов с углем:

Cа3(РО4)2 + 4С = Са3Р2 + 4СО

Они гидролизуются водой по схеме: Э3Р2 + 6Н2О = 2РН3 + 3Э(ОН)2. С кислотами фосфиды щелочноземельных металлов дают соответствующую соль и фосфин. На этом основано их применение для получения фосфина в лаборатории.

Комплексные аммиакаты состава Э(NН3)6 - твердые вещества с металлическим блеском и высокой электропроводностью. Их получают действием жидкого аммиака на Э. На воздухе они самовоспламеняются. Без доступа воздуха они разлагаются на соответствующие амиды: Э(NH3)6 = Э(NH2)2 + 4NH3 + Н2. При нагревании они энергично разлагаются по этой же схеме.

Карбиды щелочноземельных металлов которые получаются прокаливанием Э с углем разлагаются водой с выделением ацетилена: ЭС2 + 2Н2О = Э(ОН)2 + С2Н2. Реакция с ВаС2 идет настолько бурно, что он воспламеняется в контакте с водой. Теплоты образования ЭС2 из элементов для Са и Ва равны 14 и 12 ккал\моль. При нагревании с азотом ЭС2 дают СаСN2, Ba(CN)2, SrCN2. Известны силициды (ЭSi и ЭSi2). Их можно получить при нагревании непосредственно из элеменов. Они гидролизуются водой и реагируют с кислотами, давая H2Si2O5, SiH4, соответствующее соединение Э и водород. Известны бориды ЭВ6 получаемые из элементов при нагревании.

Окиси кальция и его аналогов - белые тугоплавкие(TкипСаО = 2850оС) вещества, энергично поглощающие воду. На этом основано применение ВаО для получения абсолютного спирта. Они бурно реагируют с водой, выделяя много тепла (кроме SrO растворение которой эндотермично). ЭО растворяются в кислотах и хлориде аммония: ЭО + 2NH4Cl = SrCl2 + 2NH3 + H2O. Получают ЭО прокаливанием карбонатов, нитратов, перекисей или гидроксидов соответствующих металлов. Эффективные заряды бария и кислорода в ВаО равны 0,86. SrO при 700 оС реагирует с цианистым калием:

KCN + SrO = Sr + KCNO.

Окись стронция растворяется в метаноле с образованием Sr(ОСН3)2. При магнийтермическом восстановлении ВаО может быть получен промежуточный окисел Ва2О, который неустойчив и диспропорционирует.

Гидроокиси щелочноземельных металлов - белые растворимые в воде вещества. Они являются сильными основаниями. В ряду Са-Sr-Ba основной характер и растворимость гидроокисей увеличиваются. рПР(Са(ОН)2) = 5,26, рПР(Sr(ОН)2) = 3,5, рПР(Bа(ОН)2) = 2,3. Из растворов гидроокисей обычно выделяются Ва(ОН)2.8Н2О, Sr(ОН)2.8Н2О, Cа(ОН)2.Н2О. ЭО присоединяют воду с образованием гидроокисей. На этом основано использование СаО в строительстве. Тесная смесь Са(ОН)2 и NaOH в весовом соотношении 2:1 носит название натронная известь, и широко используется как поглотитель СО2. Са(ОН)2 при стоянии на воздухе поглощает СО2 по схеме: Ca(OH)2 + CO2 = CaCO3 + Н2О. Около 400оС Са(ОН)2 реагирует с угарным газом: СО + Ca(OH)2 = СаСО3 + Н2. Баритовая вода реагирует с СS2 при 100 оС: СS2 + 2Ва(ОН)2 = ВаСО3 + Ва(НS)2 + Н2О. Алюминий реагирует с баритовой водой: 2Al + Ba(OH)2 + 10H2O = Ba[Al(OH)4(H2O)2]2 + 3H2. Э(ОН)2 используются для открытия угольного ангидрида.

Э образуют перекиси белого цвета. Они существенно менее стабильны в отличие от окисей и являются сильными окислителями. Практическое значение имеет наиболее устойчивая ВаО2, которая представляет собой белый, парамагнитный порошок с плот-ностью 4,96 г1см3 и т. пл. 450°. BaО2 устойчива при обычной температуре (может храниться годами), плохо растворяется в воде, спирте и эфире, растворяется в разбавленных кислотах с выделением соли и перекиси водорода. Термическое разложение перекиси бария ускоряют окислы, Cr2O3, Fe2O3 и CuО. Перекись бария реагирует при нагревании с водородом, серой, углеродом, аммиаком, солями аммония, феррицианидом калия и т. д. С концентрированной соляной кислотой перекись бария реагирует, выделяя хлор: ВаO2 + 4НСl = BaCl2 + Cl2 + 2H2O. Она окисляет воду до перекиси водорода: Н2О + ВаО2 = Ва(ОН)2 + Н2О2. Эта реакция обратима и в присутствии даже угольной кислоты равновесие смещено вправо. ВаО2 используется как исходный продукт для получения Н2О2, а также как окислитель в пиротехнических составах. Однако, ВаО2 может выступать и в качестве восстановителя: HgCl2 + ВаО2 = Hg + BaCl2 + O2. Получают ВаО2 нагреванием ВаО в токе воздуха до 500оС по схеме: 2ВаО + О2 = 2ВаО2. При повышении температуры имеет место обратный процесс. Поэтому при горении Ва выделяется только окись. SrO2 и СаО2 менее устойчивы. Общим методом получения ЭО2 является взаимодействие Э(ОН)2 с Н2О2, при этом выделяются ЭО2.8Н2О. Термический распад ЭО2 начинается при 380 оС (Са), 480 оС (Sr), 790 оС (Ва). При нагревании ЭО2 с концентрированной пере-кисью водорода могут быть получены желтые неустойчивые вещества -- надпероксиды ЭО4.

Соли Э как правило бесцветны. Хлориды, бромиды, иодиды и нитраты хорошо растворимы в воде. Фториды, сульфаты, карбонаты и фосфаты плохо растворимы. Ион Ва2+ - токсичен. Галиды Э делятся на две группы: фториды и все остальные. Фториды почти не растворимы в воде и кислотах, и не образуют кристаллогидратов. Напротив хлориды, бромиды, и иодиды хорошо растворимы в воде и выделяются из растворов в виде кристаллогидратов. Некоторые свойства ЭГ2 представлены ниже:

СаF2

СаCl2

СаBr2

СаI2

SrF2

SrCl2

SrBr2

SrI2

BaF2

BaCl2

BaBr2

BaI2

Тепл. обр-я, ккал\моль.

290

191

164

128

189

198

171

134

286

205

181

145

Екр. решетки, ккал\моль.

617

525

508

487

580

504

489

467

547

468

463

440

Тпл., оС

1423

782

760

575

1473

872

643

515

1353

962

853

740

Ткип., оС

2500

2000

1800

718

2460

2030

2260

1830

D(ЭГ) в парах, нм.

2,1

2,51

2,67

2,88

2,20

2,67

2,82

3,03

2,32

2,82

2,99

3,20

При получении путем обменного разложения в растворе фториды выделяются в виде объемистых слизистых осадков, довольно легко образующих коллоидные растворы. ЭГ2 можно получить действуя соответствующими галогенами на соответствующие Э. Расплавы ЭГ2 способны растворять до 30% Э. При изучении электропроводности расплавов хлоридов элементов второй группы главной подгруппы было установлено, что их молекулярно-ионный состав очень различен. Степени диссоциации по схеме ЭСl2 = Э2+ + 2Cl- равны: BeCl2 - 0,009%, MgCl2 - 14,6%, CaCl2 - 43,3%, SrCl2 - 60,6%, BaCl2 - 80,2%. Галогениды (кроме фторидов) Э содержат кристаллизационную воду: CaCl2.6Н2О, SrCl2.6Н2О и ВаCl2.2Н2О. Рентгеноструктурным анализом установлено строение Э[(ОН2)6]Г2 для кристаллогидратов Са и Sr. При медленном нагревании кристаллогидратов ЭГ2 можно получить безводные соли. CaCl2 легко образует пересыщенные растворы. Природный СаF2 (флюорит) применяют в керамической промышленности, а также он используется для производства HF и является минералом фтора. Безводный CaCl2 используют как осушитель ввиду его гидроскопичности. Кристаллогидрат хлористого кальция используют для приготовления холодильных смесей. ВаСl2 - используют в с\х и для открытия SO42-(Ва2+ + SO42- = ВаSO4). Сплавлением ЭГ2 и ЭН2 могут быть получены гидрогалиды: ЭГ2 + ЭН2 = 2ЭНГ. Эти вещества плавятся без разложения но гидролизуются водой: 2ЭНГ + 2H2O = ЭГ2 + 2Н2 + Э(ОН)2. Растворимость в воде хлоратов, броматов и иодатов в воде уменьшается по рядам Сa - Sr - Ba и Cl - Br - I. Ba(ClO3)2 - используется в пиротехнике. Перхлораты Э хорошо растворимы не только в воде но и в органических растворителях. Наиболее важным из Э(ClO4)2 является Ва(ClO4)2.3Н2О. Безводный перхлорат бария является хорошим осушителем. Его термический распад начинается только при 400 оС. Гипохлорит кальция Са(СlO)2.nH2O (n=2,3,4) получают действием хлора на известковое молоко. Он является окислителем и хорошо растворим в воде. Хлорную известь можно получить действуя хлором на твердую гашеную известь. Она разлагается водой и пахнет хлором в присутствии влаги. Реагирует с СО2 воздуха:

СО2 + 2CaOCl2 = CаСO3 + CaCl2 + Cl2O.

Хлорная известь применяется как окислитель, отбеливатель и как дезинфицирующее средство.

Для щелочноземельных металлов известны азиды Э(N3)2 и роданиды Э(CNS)2.3Н2О. Азиды по сравнению с азидом свинца гораздо менее взрывоопасны. Роданиды при нагревании легко теряют воду. Они хорошо растворимы в воде и органических растворителях. Ва(N3)2 и Ba(CNS)2 могут быть использованы для получения азидов и роданидов других металлов из сульфатов обменной реакцией.

Нитраты кальция и стронция существуют обычно в виде кристаллогидратов Са(NO3)2.4H2O и Sr(NO3)2.4H2O. Для нитрата бария не свойственно образование кристаллогидрата. При нагревании Са(NO3)2.4H2O и Sr(NO3)2.4H2O легко теряю воду. В инертной атмосфере нитраты Э термически устойчивы до 455 oC (Са), 480 oC (Sr), 495 oC (Ba). Расплав кристаллогидрата нитрата кальция имеет кислую среду при 75 оС. Особенностью нитрата бария является малая скорость растворения его кристаллов в воде. Склонность к комплексообразованию проявляет лишь нитрат бария, для которого известен нестойкий комплекс K2[Ba(NO3)4]. Нитрат кальция растворим в спиртах, метилацетате, ацетоне. Нитраты стронция и бария там же почти не растворимы. Температуры плавления нитратов Э оцениваются в 600оС, однако при этой же температуре начинается распад: Э(NO3)2 = Э(NO2)2 + O2. Дальнейший распад идет при более высокой температуре: Э(NO2)2 = ЭО + NO2 + NO. Нитраты Э уже издавна использовались в пиротехнике. Легколетучие соли Э окрашивают пламя в соответствующие цвета: Са - в оранжево-желтый, Sr - в красно-карминовый, Ba - в желто-зеленый. Разберемся в сущности этого на примере Sr: у Sr2+ есть две ВАО: 5s и 5p или 5s и 4d. Сообщим энергию этой системе - нагреем. Электроны с более близлежащих к ядру орбиталей перейдут на эти ВАО. Но такая система не устойчива и выделит энергию в виде кванта света. Как раз Sr2+ и излучает кванты с частотой, соответствующей длинам красных волн. При получении пиротехнических составов удобно использовать селитру, т.к. она не только окрашивает пламя, но и является окислителем, выделяя кислород при нагревании. Пиротехнические составы состоят из твердого окислителя, твердого восстановителя и некоторых органических веществ, обесцвечивающих пламя восстановителя, и являющихся связывающим агентом. Нитрат кальция используется как удобрение.

Страницы: 1, 2, 3, 4, 5