скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Конструкционные материалы скачать рефераты

3.2. Чугун.

Сплавы железа с углеродом (> 2,14%) называют чугуном. Различают следующие группы чугунов: серый, высокопрочный с шаровидным графитом и ковкий.

Серый чугун представляет собой сплав Fe - Si - C, содержащий в качестве неизбежных примесей Mn, P и S. В структуре серых чугунов большая часть или весь углерод находится в виде графита. Наиболее широкое применение получили доэвтектоидные чугуны, содержащие 2,4 - 3,8% углерода. Чем выше содержание в чугуне углерода, тем больше образуется графита и тем ниже его механические свойства. В связи с этим количество углерода в чугуне не превышает 3,8%. В то же время для обеспечения высоких литейных свойств углерода должно быть не менее 2,4%. Кремний оказывает большое влияние на строение, а следовательно и на свойства чугунов.

В зависимости от содержания углерода, связанного в цементит, различают несколько видов чугуна:

1. Белый чугун; весь углерод находится в виде цементита Fe3C.

2. Половинчатый чугун; большая часть углерода (свыше 0,8%) находится в виде Fe3C.

3. Перлитный серый чугун; 0,7 - 0,8% углерода находится в виде Fe3C, входящего в состав перлита.

4. Ферритно-перлитный серый чугун. В этом чугуне в зависимости от степени распада эвтектоидного цементита в связанном состоянии находится от 0,7 до 0,1% углерода.

5. Ферритный серый чугун. В этом случае весь чугун находится в виде графита.

Количество марганца в чугуне не превышает 1,25 - 1,4%. Марганец препятствует процессу графитизации, т.е. затрудняет выделение графита и повышает способность чугуна к отбеливанию.

Сера является вредной примесью, ухудшающей механические и литейные свойства чугуна, поэтому ее содержание ограничивают до 0,1 - 0,12%.

Содержание фосфора в сером чугуне приблизительно 0,2%, но иногда допускается даже 0,5%. При повышенном содержании фосфора в структуре чугуна образуются твердые включения фосфидной эвтектики. Образование эвтектики улучшает литейные свойства чугуна, при этом увеличивая хрупкость отливок.

Серые чугуны по их применению можно разделить на группы:

1. Ферритные и ферритно-перлитные чугуны применяют для изготовления малоответственных деталей, испытывающих небольшие нагрузки в работе.

2. Перлитные чугуны применяют для отливки станин мощных станков и механизмов, поршней, цилиндров, деталей, работающих на износ в условиях больших давлений.

3. Антифрикционные чугуны применяют для изготовления подшипников скольжения, втулок и других деталей, работающих при трении о металл.

Белый и отбеленный чугун обладает высокой твердостью и хрупкостью. Практически не поддается обработке резанием. Высокая твердость поверхности обуславливает хорошую сопротивляемость против износа, поэтому его используют для изготовления прокатных валков листовых станков, колес, шаров для мельниц и т. д.

Высокопрочный чугун с шаровидным графитом. Высокопрочный чугун получают присадкой в жидкий чугун небольших добавок некоторых щелочных или щелочноземельных металлов. Чаще для этой цели применяют магний.

Чугуны с шаровидным графитом имеют более высокие механические свойства, не уступающие литой углеродистой стали, сохраняя при этом хорошие литейные свойства и обрабатываемость резанием, способность гасить вибрации, износостойкость и т. д.

Высокопрочные чугуны применяют в автостроении и дизелестроении для коленчатых валов, крышек цилиндров и других деталей; в тяжелом машиностроении - для многих деталей прокатных станков; в химической и нефтяной промышленности - для корпусов насосов, вентилей.

Ковкий чугун. Ковкий чугун получают длительным нагревом при высоких температурах отливок из белого чугуна. Ковкий чугун имеет пониженное содержание углерода и кремния. Более низкое содержание углерода способствует повышению пластичности, так как при этом уменьшается количество графита, выделяющегося при отжиге.

Ковкий чугун применяют главным образом для изготовления тонкостенных деталей в отличие от высокопрочного магниевого чугуна, который используют для деталей большого сечения.

4. Пластмассы.

Пластмассами называют искусственные материалы, полученные на основе органических полимерных связующих веществ. Эти материалы способны при нагревании размягчаться, становиться пластичными, и тогда под давлением им можно придать заданную форму, которая затем сохраняется.

4.1. Термопластичные пластмассы.

В основе термопластичных пластмасс лежат полимеры линейной или разветвленной структуры, иногда в состав полимеров вводят пластификаторы. Термопластичные пластмассы применяют в качестве прозрачных органических стекол, высоко- и низкочастотных диэлектриков, химически стойких материалов; из этих пластмасс изготовляют тонкие пленки и волокна.

Неполярные термопластичные пластмассы. К неполярным пластикам относятся полиэтилен, полипропилен, полистирол и фторопласт-4.

Полиэтилен (- CH2 - CH2 -)n - продукт полимеризации бесцветного газа этилена, относящийся к кристаллизующимся полимерам. Теплостойкость полиэтилена невысока, поэтому длительно его можно применять при температурах до 60 - 100єС. Морозостойкость полиэтилена достигает - 70єС и ниже. Полиэтилен используют для изготовления труб, литых и прессованных несиловых деталей, полиэтиленовых пленок для изоляции проводов и кабелей, чехлов, остекленения парников, облицовки водоемов; кроме того, полиэтилен служит покрытием на металлах для защиты от коррозии, влаги, электрического тока и др.

Полипропилен (- CH2 - CHCH3 -)n - является производной этилена. Это жесткий нетоксичный материал с высокими физико-механическими свойствами. По сравнению с полиэтиленом этот пластик более теплостоек: сохраняет форму до температуры 150єС. Полипропиленовые пленки прочны и более газонепроницаемы, чем полиэтиленовые, а волокна эластичны, прочны и химически стойки.

Полипропилен применяют для изготовления труб, конструкционных деталей автомобилей, мотоциклов, холодильников, корпусов насосов, различных емкостей и др. Пленки используют в тех же целях, что и полиэтиленовые

Полистирол (- CH2 - CHC6H5 -)n - твердый, жесткий, прозрачный, аморфный полимер. По диэлектрическим характеристикам близок к полиэтилену, удобен для механической обработки, хорошо окрашивается. Недостатками полистирола являются его невысокая теплостойкость, склонность к старению, образование трещин. Из полистирола изготовляют детали для радиотехники, телевидения и приборов, детали машин, сосуды для воды и химикатов, пленки стирофлекс для электроизоляции.

Фторопласт-4 являются термически и химически стойкими материалами. Фторопласт-4 можно длительно эксплуатировать при температуре до 250єС. Разрушение материала происходит при температуре выше 415єС. Фторопласт-4 стоек к действию растворителей, кислот, щелочей, окислителей. Фторопласт-4 применяют для изготовления труб для химикатов, деталей (вентили, краны, насосы, мембраны), уплотнительных прокладок, манжет, сильфонов, электрорадиотехнических деталей, антифрикционных покрытий на металлах.

Полярные термопластичные пластмассы. К полярным пластикам относятся фторопласт-3, органическое стекло, поливинилхлорид, полиамиды, полиуретаны, полиэтилентерефталат, поликарбонат, полиарилаты, пентапласт, полиформальдегид.

Фторопласт-3 полимер трифторхлорэтилена, имеет формулу (-CF2 - CFCl-)n и является кристаллическим полимером. Интервал рабочих температур фторопласта-3 от -105 до +70єС. При температуре 315єС начинается термическое разрушение. Фторопласт-3 используют как низкочастотный диэлектрик, кроме того из него изготовляют трубы, шланги, клапаны, насосы, защитные покрытия металла и др.

Органическое стекло - это прозрачный аморфный термопласт на основе сложных эфиров акриловой и метакриловой кислот. При температуре 80єС органическое стекло начинает размягчаться; при температуре 105 - 150єС появляется пластичность, что позволяет формировать из него различные детали. Органическое стекло стойко к действию разбавленных кислот и щелочей, углеводородных топлив и смазок, растворяется в эфирах и кетонах, в органических кислотах, ароматических и хлорированных углеводородах. Органическое стекло используют в самолетостроении, автомобилестроении. Из органического стекла изготовляют светотехнические детали и оптические линзы.

Поливинилхлорид является полярным аморфным полимером с химической формулой (- CH2 - CHCl -)n. Пластмассы на основе поливинилхлорида имеют хорошие электроизоляционные характеристики, стойки к химикатам, не поддерживают горение, атмосферостойки. Непластифицированный твердый поливинилхлорид называется винипластом. Из винипласта изготовляют трубы для подачи агрессивных газов, жидкостей и воды, защитные покрытия для электропроводки, детали вентиляционных установок, теплообменников, защитные покрытия для металлических емкостей, строительные облицовочные плитки.

Полиамиды - это кристаллизующиеся полимеры. У них низкая плотность. Полиамиды имеют низкий коэффициент трения, продолжительное время могут работать на истирание; кроме того, полиамиды ударопрочны и способны поглощать вибрацию. Они стойки к щелочам, бензину, спирту; устойчивы в тропических условиях. Из полиамидов изготовляют шестерни, втулки, подшипники, болты, гайки, шкивы, детали ткацких станков, маслобензопроводы, уплотнители гидросистем, колеса центробежных насосов, турбин, турбобуров, буксирные канаты и т. д. Полиамиды используют в электротехнической промышленности, медицине и, кроме того, как антифрикционные покрытия металлов.

Полиуретаны содержат уретановую группу - NH - COO -. Свойства полиуретана в основном близки к свойствам полиамидов. Из полиуретана вырабатывают пленочные материалы и волокна, которые малогигроскопичны и химически стойки.

Полиэтилентерефталат является кристаллическим полимером. Является диэлектриком и обладает относительно высокой химической стойкостью, устойчив в условиях тропического климата. Из полиэтилентерефталата изготовляют шестерни, кронштейны, канаты, ремни, ткани, пленки и др.

Поликарбонат - сложный полиэфир угольной кислоты. Химически стоек к растворам солей, разбавленным кислотам и щелочам, топливу, маслам; разрушается крепкими щелочами. Выдерживает светотепловакуумное старение и тепловые удары. Поликарбонат имеет ограниченную стойкость к ионизирующим излучениям. Из поликарбоната изготовляют шестерни, подшипники, автодетали, радиодетали.

Полиарилаты - сложные гетероцепные полиэфиры. Полиарилатам присущи высокая термическая стойкость и морозостойкость, хорошие показатели механической прочности и антифрикционные свойства. Полиарилаты применяются для подшипников, работающих в глубоком вакууме без смазки, в качестве уплотнительных материалов в буровой технике.

Пентапласт обладает удовлетворительными электроизоляционными свойствами. Кроме того, он водостоек. Из пентапласта изготовляют трубы, клапаны, детали насосов и точных приборов, емкости, пленки и защитные покрытия на металлах.

Полиформальдегид имеет температурный интервал применимости от -40 до +130єС. Он водостоек, стоек к минеральным маслам и бензину. Полиформальдегид используют для изготовления зубчатых передач, шестерен, подшипников, клапанов, деталей автомобилей, конвейеров и т. д.

Термостойкие пластики. К термостойким пластикам относятся ароматические полиамиды, полифениленоксид, полисульфон, полиимиды и полибензимидазолы. Температура эксплуатации до 400єС.

Ароматический полиамид имеет повышенную стойкость к радиации и химическую стойкость. Обладает высокой усталостной прочностью и износостойкостью. Из него изготавливают подшипники, уплотнительные детали запорных устройств, зубчатые колеса, детали электропередач.

Полифениленоксид обладает химической стойкостью, низким водопоглощением, имеет хорошие физико-механические характеристики. Длительно его можно применять до 130 - 150єС. Из него изготовляют детали оборудования, хирургические инструменты, изоляцию на высокочастотных установках.

Полисульфон - это термически стабильный, химически стойкий материал. По прочностным свойствам близок к полифениленоксиду. Полисульфон применяют в виде пленок, литых изделий и покрытий для эксплуатации при температурах от -100 до +175єС. Из него изготовляют детали автомобилей, станков, бытовых машин, электротехнических изделий.

Полиимиды - ароматические гетероциклические полимеры. В зависимости от структуры они могут быть термопластичными и термореактивными. Полиимиды отличаются высокими механическими и электроизоляционными свойствами, широким диапазоном рабочих температур (от -200 до +300єС), стойкостью к радиации. Полиимиды стойки к действию растворителей, масел, слабым кислотам и основаниям. Разрушаются при длительном воздействии кипящей воды и водяных паров. Могут длительно работать в вакууме при высоких температурах.

Полиимиды применяют в виде пленок для изоляции проводов и кабелей, печатных схем, электронно-вакуумной тепловой изоляции.

Полибензимидазолы являются ароматическими гетероциклическими полимерами. Они обладают высокой термостойкостью, хорошими прочностными показателями, высокими диэлектрическими свойствами. Волокна огнестойки и термостойки. Полибензимидазолы применяют в виде пленок, волокон, тканей для специальных костюмов, могут использоваться в качестве связующих для армированных пластиков.

Термопласты с наполнителями. В качестве полимерных матриц используют различные термопласты. В качестве армирующих наполнителей можно использовать стеклянное волокно, асбест, органические волокна и ткани.

В промышленном масштабе применяют полиамиды и поликарбонат, наполненные мелкорубленым стекловолокном. Стекловолокниты обладают повышенными прочностью и теплостойкостью, усталостной прочностью и износостойкостью. Интервал рабочих температур от -60 до +150єС.

Термопласты с наполнителями в виде синтетических волокон (капрон, лавсан) являются перспективными. Обладают высокой длительной прочностью.

Слоистые термопласты содержат в качестве наполнителей ткани из различных волокон. Из них изготовляют подшипники, зубчатые передачи, трубы вентили, емкости для агрессивных сред и др.

4.2. Термореактивные пластмассы.

В качестве связующих веществ применяются термореактивные смолы, в которые иногда вводят пластификаторы, отвердители, ускорители или замедлители, растворители. В зависимости от формы частиц наполнителя термореактивные пластмассы можно подразделить на следующие группы: порошковые, волокнистые и слоистые.

Пластмассы с порошковыми наполнителями. В качестве наполнителя применяют органические и минеральные порошки. Свойства порошковых пластмасс характеризуются изотропностью, невысокой механической прочностью и низкой ударной вязкостью.

На основе фенолоформальдегидных смол с органическими наполнителями изготовляют пресс-порошки, из которых прессованием получают несиловые и электроизоляционные детали: рукоятки, детали приборов и др.

Минеральные наполнители придают пластмассе водостойкость, химическую стойкость, повышенные электроизоляционные свойства, устойчивость к тропическому климату.

Пластмассы с порошковыми наполнителями широко применяют в машиностроении для изготовления различной инструментальной оснастки, вытяжных и формовочных штампов, корпусов станочных, сборочных и контрольных приспособлений, литейных моделей, копиров и др.

Пластмассы с волокнистыми наполнителями. К этой группе пластмасс относятся волокниты, асбоволокниты, стекловолокниты.

Волокниты применяют для деталей общего технического назначения с повышенной устойчивостью к ударным нагрузкам, работающим на изгиб и кручение.

Асбоволокниты обладают повышенной теплостойкостью (свыше 200єС) и ударопрочностью, устойчивостью к кислым средам и высокими фрикционными свойствами. Асбоволокниты используются в качестве материала тормозных устройств (колодки, накладки, диски подъемных кранов, вагонов, автомобилей и др.); из материала фаолита (разновидность асбоволокнитов) получают кислотоупорные аппараты, ванны, трубы.

Стекловолокниты получают продавливанием расплавленной стекломассы через фильеры. В качестве наполнителя применяют непрерывное стекловолокно или короткое волокно. Обладают хорошими прочностными характеристиками. Используются для крупногабаритных изделий простых форм (кузова автомашин, лодки, корпуса приборов).

Слоистые пластмассы являются силовыми конструкционными и поделочными материалами. Листовые наполнители, уложенные слоями, придают пластику анизотропность. Материалы выпускаются в виде листов, плит, труб, заготовок, из которых механической обработкой получают различные детали.

Гетинакс по назначению подразделяют на электротехнический и декоративный, который может иметь различные цвета и текстуру, имитирующую древесные породы. Пластик можно применять при температуре 120 - 140єС. Он устойчив к действию химикатов, растворителей, пищевых продуктов; используется для внутренней облицовки пассажирских кабин самолетов, железнодорожных вагонов, кают судов, в строительстве.

Текстолит. Среди слоистых пластиков обладает наибольшей способностью поглощать вибрационные нагрузки, хорошо сопротивляться раскалыванию. Текстолит применяют для зубчатых колес. Текстолитовые вкладыши подшипников служат в 10 - 15 раз дольше бронзовых. Однако рабочая температура текстолитовых подшипников невысока (80 - 90єС). Они применяются в прокатных станах, центробежных насосах, турбинах и др.

Древеснослоистые пластики (ДСП) состоят из тонких листов древесного шпона, пропитанных феноло- и крезольно-формальдегидными смолами и спрессованных в виде листов и плит. Древеснослоистые пластики имеют высокие физико-механические свойства, низкий коэффициент трения и с успехом заменяют текстолит, а также цветные металлы и сплавы. Недостатком ДСП является чувствительность к влаге. Из ДСП изготавливают шкивы, втулки, ползуны лесопильных рам, корпусы насосов, подшипники, детали автомобилей, железнодорожных вагонов, лодок и детали текстильных машин.

Асботекстолит является конструкционным, фрикционным термоизоляционным материалом. Обладает высокой теплостойкостью (300єС) и механической прочностью. Из асботекстолита делают лопатки ротационных бензонасосов, фрикционные диски и тормозные колодки. Асботекстолит выдерживает кратковременно высокие температуры и поэтому применяется в качестве теплозащитного теплоизоляционного материала.

4.3. Газонаполненные пластмассы.

Газонаполненные пластмассы представляют собой гетерогенные дисперсные системы, состоящие из твердой и газообразной фаз. Такие пластмассы имеют чрезвычайно малую массу и высокие теплозвукоизоляционные характеристики. В зависимости от физической структуры газонаполненные пластмассы делят на две группы:

1. Пенопласты - материалы с ячеистой структурой, в которых газообразные наполнители изолированы друг от друга и от окружающей среды тонкими слоями полимерного связующего;

2. Поропласты - губчатые материалы с открытопористой структурой, вследствие чего присутствующие в них газообразные включения свободно сообщаются друг с другом и с окружающей атмосферой.

Пенопласты получили наиболее широкое применение. Замкнуто-ячеистая структура обеспечивает хорошую плавучесть и высокие теплоизоляционные свойства. Механическая плотность пенопластов невысока и зависит от плотности материала. Пенопласты применяют для теплоизоляции кабин, контейнеров, приборов, рефрижераторов, труб и т. д. Широкое применение пенопласты получили в строительстве и при производстве труднозатопляемых изделий. Используются в авиастроении, судостроении, на железнодорожном транспорте и т. д.

Сотопласты изготовляют из тонких листовых материалов. Материалом для сотопластов служат ткани (стеклянные, кремнеземные, угольные). Сотопласты имеют достаточно высокие теплоизоляционные свойства. Они служат легкими заполнителями многослойных панелей, применяемых в авиа- и судостроении для несущих конструкций; при создании наружной теплозащиты и теплоизоляции космических кораблей; в антенных обтекателях самолетов и др.

Содержание.

1. Сплавы на основе алюминия………………………………………………….1

1.1 Классификация алюминиевых сплавов……………………………....1

1.2 Деформируемые алюминиевые сплавы, упрочняемые

термической обработкой………………………….....................................1

1.3 Деформируемые алюминиевые сплавы, не упрочняемые

термической обработкой………………………………………………….3

1.4 Литые алюминиевые сплавы…………………………………………..3

1.5 Алюминиевые подшипниковые сплавы………………………………4

1.6 Спеченные алюминиевые сплавы……………………………………..4

2. Сплавы на основе меди………………………………………………………...5

2.1 Классификация медных сплавов……………………………………....5

2.2 Латуни…………………………………………………………………...5

2.3 Бронзы…………………………………………………………………...6

3. Сплавы на основе железа……………………………………………………….8

3.1 Сталь……………………………………………………………………..8

· Углеродистые конструкционные стали………………………...8

· Автоматные стали………………………………………………..9

· Конструкционные низколегированные стали………………….9

· Конструкционные цементуемые легированные стали………..10

· Конструкционные улучшаемые легированные стали…………11

· Мартенситностареющие высокопрочные стали……………….12

3.2 Чугун…………………………………………………………………….12

4. Пластмассы……………………………………………………………………...13

4.1 Термопластичные пластмассы…………………………………………14

4.2 Термореактивные пластмассы………………………………………....17

4.3 Газонаполненные пластмассы………………………………………....18

Array

Страницы: 1, 2, 3