скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Анализ следов веществ скачать рефераты

Ряд элементов - Li, Be, Mg, Al, Nb, Ti, Rh - не удается определить с достаточной чувствительностью методом активации нейтронами.

Масс-спектромстрия. Применение метода изотопного разбавления в соединении с масс-спектрометрией позволяет производить определение ряда элементов в твердых образцах с концентрацией до 10~. После того как образец введен в раствор, добавляется известное количество изотопного индикатора определяемого элемента. Затем элемент отделяют химически; изменение в изотопном составе, обусловленное индикаторным разбавлением, определяют масс-спектрометрнчески и таким образом находят первоначальное количество элемента. Таким способом успешно определяли уран в каменных метеоритах с концентрацией до 0,01 ч. на млн.

Около 7096 всех элементов имеет несколько стабильных изотопов и могут, по крайней мере в принципе, определяться методом изотопного разбавления. Современные масс-спектрометры дают возможность анализировать металлы и тугоплавкие вещества при температурах вплоть до 2500°; таким образом, теперь приготовление соединений с высокой упругостью пара при низкой температуре не так важно, как раньше.

Полярография в. Большинство аналитиков хорошо знакомо с принципами полярографического метода, и здесь необходимо лишь сказать, что по числу элементов, которые можно определять таким путем, по чувствительности и точности определений он конкурирует с колориметрическим и спектрометрическим методами, иногда даже превосходя их.

Катализ и индукция. Некоторые элементы можно определять путем ускорения ими окислительно-восстановительных реакций, в обычных условиях протекающих очень медленно. Например, осмий, рутений и иод сильно катализируют медленную реакцию

As+2CeAs+2Ce.

Катализирующие элементы с более высоким состоянием окисления быстро восстанавливаются мышьяком до состояний, которые вновь быстро реокисляются церием. Скорость катализируемой реакции пропорциональна концентрации катализатора и обычно очень легко определяется фотометрически путем измерения светопоглощения желтой окраски раствора в зависимости от времени. Осмий и иод можно обнаружить в растворах, разбавленных до концентраций 0,001 и 0,01 ч. на млн.'

Примером реакции индуцирования, которую можно применить для определения следов вещества, служит восстановление хрома четырехвалентным теллуром до более низкого состояния окисления, которое, по-видимому, соответствует четырехвалентному хрому:

При избытке хрома эту реакцию можно использовать для определения теллура титрованием, осуществляя взаимодействие Cr с ионами фенантролина железа в растворе соответствующей кислотности:

Количество образовавшегося фенантролина железа, которое можно найти спектрофотометрическим измерением, соответствует эквивалентному количеству теллура. Этот косвенный метод определения теллура более чувствителен, чем любой прямой колориметрический метод, доступный для данного элемента.

Если в избытке находится теллур, то Сг, образовавшийся по реакции, вновь восстанавливается теллуром в хром, который восстанавливает фенантролин железа, и т.д. Эта реакция сочетает индукцию и катализ. Она позволяет обнаружить чрезвычайно малые количества хрома. Ланг приводит предельное значение концентрации при определении хрома, равное 1:2-10. Циклические реакции в конце концов завершаются благодаря побочным реакциям, например реакции между Те и Сг с образованием Cr.

Каталитические индуцированные реакции не имеют большого практического значения, если нет эффективного средства отделения анализируемого вещества.

Другие методы. Микроскопические методы, основанные на измерении диаметра королька золота, получаемого в результате купеляции, или шаровидных частиц ртути, нашли ограниченное применение.

Нехимический метод определения следов некоторых элементов, являющихся питательными веществами для бактерий, основан на избирательном росте микроорганизмов по отношению к ним.

Роль колориметрии в анализе следов веществ

В настоящее время основная масса анализов по определению следов веществ выполняется при помощи эмиссионной спектрографии и колориметрии. Спектрографический метод применим для определения любого элемента, однако с «чувствительностью, изменяющейся в широких пределах. Для некоторых элементов нет удовлетворительных колориметрических методов определения, для других эти методы недостаточно чувствительны, чтобы их использовать в анализе следов веществ. Колориметрическому определению лучше всего поддаются тяжелые металлы. Как правило, колориметрическое определение следов элементов требует проведения многочисленных операций разделения. В этом требовании заключается как слабая, так и сильная стороны метода. С одной стороны, не всегда есть эффективные методы разделения. В процессе разделения могут происходить незначительные потери определяемого компонента и не полностью удаляться элементы, мешающие определению. Процедура отделения следов элемента может оказаться довольно трудной. С другой стороны, если возможно осуществить удовлетворительное отделение - а это в действительности скорее правило, чем исключение, - влияние посторонних элементов устраняется, и колориметрический метод становится абсолютным. Этого часто нельзя сказать в отношении обычных спектрографических анализов, в ходе которых не делается никаких химических разделений, и точность результата может сильно зависеть от состава образца и от точности стандарта. Кроме того, точность колориметрического определения может превысить точность спектрографического определения; проще измерить оптическую плотность раствора, чем плотность линии на фотографической пластинке. Таким образом, выигрыш во времени, который дает спектрографический метод, может быть сведен на нет меньшей надежностью и точностью определений. Спектрографический метод анализа наиболее предпочтителен в тех случаях, когда приходится производить много определений одного или нескольких элементов на образцах примерно постоянного макроскопического состава. При небольшом числе измерений значительная работа, которую нужно проделать при калибровке прибора, вряд ли стоит затраченного времени. В этом случае более удобными могут оказаться колориметрические методы. По концентрационной чувствительности спектральный и колориметрический методы часто имеют меньшие различия, чем обычно считают. В спектрографическом методе анализа обычно применяют образец микроскопического размера, а это ведет к увеличению минимального процентного содержания элемента, которое можно определить, даже если абсолютная чувствительность метода высока. При колориметрическом определении величина анализируемого образца может быть в 100 раз больше, чем при простом спектрографическом определении, и поэтому более высокая относительная или концентрационная чувствительность колориметрического метода может уравновесить более высокую абсолютную чувствительность спектрографического метода. Если имеющееся в распоряжении количество анализируемого вещества ограничено, относительная чувствительность спектрального метода может, конечно, превзойти чувствительность колориметрического метода, но положение часто становится обратным, если доступны 1-2 г. вещества. Интересно провести некоторые сравнения спектрального и колориметрического методов по их чувствительности. Значения средней абсолютной чувствительности спектрального метода при различных способах возбуждения приведены ниже.

Способ возбуждения

Количество металла на электроде, мг

Дуга постоянного тока

10-5-Ю-4

Катодный слон дуги постоянного тока

10-в-5

Высоковольтная дуга переменного тока

Ю-» - ю-5

Конденсированная искра постоянного тока

1 о-» - ю-*

Практическая чувствительность некоторых цветных реакций соответствует 10 мг или меньше.

Метод дуговой спектрографии обычно применяют для определения следов элементов в силикатах. Чувствительность спектрального метода, выраженная в частях на миллион, при определении различных металлов указана ниже: Ag 1; Be 10, 1, 4; Cd 300; Со 2, 10; Сг 1, 1, 0,2; Ga 5, 10, 5; Ge 15; Mo 1, 5; Ni 2, 5; Pb 30, 10, 10; Zn 350, 100. Каждый из этих металлов можно определить колориметрически или флуо-риметрически с чувствительностью, равной 1 ч. на млн.

Посредством специальной методики, заключающейся во фракционной перегонке, некоторые относительно легко летучие металлы, такие, как цинк, кадмий, ртуть, индий, таллий, германий, мышьяк и висмут, можно обнаружить спектрографически в количестве порядка 0,01 ч. на мл при анализе образца силиката весом 1-3 г. Вообще чувствительность спектрографического анализа можно повысить, если элемент, подлежащий определению, предварительно отделить, так как абсолютная чувствительность спектрографического метода обычно выше по сравнению с колориметрическим методом. В прошлом и в значительной степени в настоящее время аналитики-спектрографисты в целом довольно редко прибегали

к этому способу, хотя время от времени он все же применяется. Благодаря высокой разрешающей способности спектрографического метода часто следует предпринимать лишь частичное разделение в форме химического обогащения определяемых компонентов. Для разделения применяют осаждение, соосаждение, экстракцию несмешивающимися растворителями, а также другие методики.

Общий предел особо чувствительных колориметрических методов составляет около 0,1 ч. на млн. при анализе твердого образца весом 1 г. Достижение этого предела с образцами сложного состава предполагает доступность хороших методов разделения. При анализе образцов большего веса предел измерений может быть снижен. Селен в почвах можно определить колориметрически с чувствительностью до 0,0001 ч. на млн. Sa Предел измерения содержания некоторых тяжелых металлов в водных растворах, пробы большого объема которых легко обрабатываются, составляет 10 ч. на млн. При анализе биологических материалов возможная концентрация обнаружения ряда элементов менее 0,1 ч. на млн.

Для большинства элементов радиоактивационный метод анализа значительно превосходит по чувствительности спектрографический и колориметрический методы. Надежность определения по сравнению с колориметрией также может быть выше, потому что достоверность выделенного радиоэлемента можно проконтролировать путем измерения его периода полураспада, вносится поправка на потери при выделении радиоэлементов, а возможность загрязнения посторонними примесями ограничена, так как не требуется какой-либо химической обработки препарата до активации. Но в то же время работа с радиоактивными веществами требует соблюдения мер предосторожности, химическая обработка радиоактивного образца часто трудна и длительна, в ряде случаев отсутствует избирательность. Радиоактивационный анализ особенно ценен для определения элементов, содержащихся в препарате в количестве менее X, l ч. на млн. В общем этот метод более приемлем для решения специальных проблем, чем для выполнения обычных анализов.

Широкое применение колориметрического метода для определения следов и незначительных количеств веществ объясняется рядом причин: умеренными требованиями к аппаратуре, возможностью использования метода аналитиком средней квалификации, высокой чувствительностью метода, отвечающей современным требованиям, и точностью, не менее высокой, чем точность любого другого метода в этой области.

В табл. 2 и 3 приведено несколько сравнительных оценок по определению следов веществ в материалах биологического происхождения различными методами. Можно установить хорошее соответствие полученных данных с результатами колориметрических измерений.

Меры предосторожности при определении следов веществ

Попадание посторонних веществ во время приготовления пробы и в ходе самого анализа может иметь более серьезные последствия при анализе следов, чем в каком-либо другом типе анализа; на этот источник ошибок следует обратить особое внимание.

Необходимо тщательно соблюдать меры предосторожности для предохранения пробы от существенного загрязнения в результате случайного попадания металла из общих лабораторных предметов: железа из штативов, никеля из тигельных щипцов, меди и цинка из горелки, цинка из резины и т.д. При просеивании нужно использовать шелковые сита вместо металлических. Следует иметь в виду возможное попадание некоторых легирующих элементов стали, когда для измельчения твердых материалов, таких, как силикаты, пользуются ступкой Плетнера из закаленной стали. Количество посторонних металлов, которые могут таким путем попадать в препарат в обычных условиях измельчения в ступке, указано в табл. 4. Иногда встречаются и некоторые непредвиденные элементы. Так, например, в стали ступки Плетнера были найдены ниобий и тантал».

Описаны плитки и дробитель из высококачественной алюминиевой керамики для измельчения горных пород. Как установлено, единственными элементами, которые попали в порошок при измельчении куска кварца до 100 меш, были титан и магний; алюминия найдено не было.

Серьезное загрязнение растительных материалов может происходить при их механическом, измельчении. Так, установлено, что при размалывании образцов на молотковых мельницах и мельницах системы Wiley вносятся железо и медь. Применение вибромельницы с кремневыми шарами приводило к загрязнению железом, медью, цинком, кобальтом и натрием; при использовании фарфоровых или муллитовых шаров, помимо этих элементов, вносятся также кальций, сера и фосфор. Измельчение вручную пестиком в фарфоровых ступках не приводило к заметному загрязнению пробы железом, медью, цинком, бором, кобальтом, марганцем, молибде-hqm, кальцием, натрием, магнием, фосфором, серой или калием. Сконструирована мельница с нейлоновыми роликами, которая должна обеспечить приготовление растительных образцов без заметного загрязнения следами элементов.

Малые количества некоторых тяжелых металлов могут попадать в препарат из стеклянной и платиновой посуды, применяемой для анализа. Так, стекло пирекс может давать следы мышьяка, цинка, свинца, а возможно, и других тяжелых металлов. Вообще стекло пирекс и другое боро-силикатиое стекло не применяются при определении малых количеств бора; для этой цели подходит стекло корнинг №728. Платиновая посуда обычно содержит железо, и некоторое количество его почти наверняка будет попадать в кислые растворы при контакте с платиной. Глазурь фарфора может содержать такие тяжелые металлы, как свинец. Посуда из плавленого кварца часто представляет большую ценность для анализа следов веществ, так как она вообще не содержит тяжелых металлов и химически стойка к большинству кислот. Иногда находит применение стекло викор. Оно не содержит щелочных металлов и кальция, но в нем имеются R203, В и As.

Анализ следов веществ не следует выполнять в стеклянной посуде, которая ранее использовалась для макроанализов. Так, при определении следов молибдена совершенно недопустимо применять стеклянный стакан, в котором ранее производилось осаждение фосфора в вндефосфоромолибдата аммония. Стеклянная посуда, обработанная хромовой смесью, прочно удерживает следы хрома даже после тщательной промывки. Фильтровальная бумага всегда содержит небольшие количества металлов. Так, в беззольной фильтровальной бумаге были найдены следующие элементы:

Al, Ba, Ca, Cr, Cu, Fe, Ge, K. Mg, Mn, Na, Ni, Pb, Sb, Si, Ti. V, Zn, Zr и редкие земли. Некоторые из этих элементов содержатся в ничтожных, другие - в заметных количествах. Например, в золе беззольных фильтров было найдено около 1% РЬО, 0,3% ZnO и 0,3% Sn02; всегда присутствуют большие количества кальция, магния и других элементов.

Страницы: 1, 2, 3