скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Анализ биологических тканей и жидкостей скачать рефераты

3) масс-анализатора, предназначенного для разделения ионов2 по массам (вернее, по отношению массы к заряду);

4) детектора и регистрирующего устройства, предназначенного для регистрации количества образующихся ионов различной массы;

5) вакуумной системы, обеспечивающей необходимый вакуум в приборе.

Большие принципиальные возможности масс-спектрометрии появляются при сочетании её с другими методами. Сочетание методов значительно расширяет возможности каждого из них, позволяя получать больше информации об объекте исследования.

Весьма эффективными, как для хроматографии, так и для масс-спектрометрии, оказались хромато-масс-спектрометры - одни из наиболее распространенных современных аналитических приборов. В них различные типы газовых, жидкостных или ионных хроматографов (электрофореза) обеспечивают предварительное разделение вещества, а индикацию разделенных веществ и измерение их содержаний осуществляет масс-спектрометр. Поэтому масс-спектрометры в хромато-масс-спектрометрах большей частью имеют дело не со смесью соединений, а с индивидуальными соединениями, на короткое время поступающими в источник ионов.

Рассмотрим наиболее распространенные масс-спектрометрические методы.

1. Хромат -масс-спектрометрия с индуктивно связанной плазмой

В индуктивно-связанной плазме ионы генерируются при атмосферном давлении, в то время как масс-спектрометр работает при давлении меньше чем 10-5 мБар. Между ИСП и МС используется интерфейс в виде «узкого горла», с помощью которого вытягиваются ионы из плазмы и осуществляется перепад давлений.

Этот метод позволяет определить элементный состав биоматериала.

Преимуществами этого метода являетются:

· Многоэлементность

· Низкие пределы обнарудения

· Малое время анализа

· Малый объем анализируемой пробы

Недостатком является то, что спектральные и матричные влияния существенно повышают нижнюю границу определения содержания.

Метод используется для выявления нарушений микроэлементного статуса пациента путем анализа крови, мочи или волос и позволяет разработать дополнительные пути коррекции различных патологий, а также прогнозировать и предотвращать ряд осложнений.

2. Газовая хроматография-сжигание-масс-спектрометрия

Позволяет определить соотношение изотопов 13С\12С. Метод широко используется в спортивном допинг-контроле. Соотношение этих изотопов в организме человека лежит в пределах от -17‰ до -27‰. При употреблении допинг-препаратов, которые изготавливаются обычно из растительного сырья, соотношение меняется до -30‰.

Перед определением изотопного соотношения хроматографичеки отделяют гормоны и вещества, аналогичные гормонам. Затем проводят определение соотношения изотопов.

Основная проблема этого анализа - сложность матрицы и существенная разница концентраций целевых соединений.

Так как пробоподготовка в масс-спектрометрических методах сложная и многоэтапная, каждая проба сопровождается двумя контрольными: заведомо положительной и заведомо отрицательной.

Иммунохимические методы

В основе иммунохимических методов анализа лежит высокоспецифичная и высокочувствительная иммунная реакция антигена с антителами. Антитела - это белки класса иммуноглобулинов, которые вырабатываются в имунной системе в результате проявления защитной функции (иммунитета) при попадании в организм чужеродного вещества - антигена.

Антиген - это вещество, которое индуцирует выработку антител.

Достоинства метода:

· Быстрота и простота определения;

· Возможность автоматизации и использования для массовых анализов в полевых условиях;

· Не сложная пробоподготовка;

· Высокая точность;

· Не требуется дорогостоящей аппаратуры.

Недостатками можно назвать узкую специфичность и влияние компонентов матрицы.

Метод применяется для обнаружения вирусов, гормонов, лекарственных препаратов, определения биологически активных веществ.

Для определения моновалентных антигенов используется конкурентная схема - в систему водятся меченые ферментом вещества, которые конкурируют с антигеном при взаимодействии с ограниченным числом центров связывания специфичных антител.

Существует два способа реализации иммунохимического анализа - прямой и непрямой.

Прямой способ. Антитела нанесены на твердую фазу, ферментная метка вводится в антиген. Преимущества - небольшое число стадий и, соответственно, возможность автоматизации определения. Недостатоки - сложность и неуниверсальность методов синтеза ферментных коньюгатов (промежуточная стадия имунной реакции), а также возможное влияние компонентов образца на активность фермента

Непрямой способ. Антиген наносится на твердую фазу, ферментной меткой отмечаются вторичные антитела, полученные против иммуноглобулинов соответствующего типа. Достоиством этого способа является возможность устранения влияний различных эффектов на каталитические свойства ферментов.

На основе иммуннохимического метода создано множество тест-систем. Они реализуются обычно на микропланшетах или в пробирках. С помощью тест-систем определяются гормоны и лекарства в сыворотке крови. Кроме того, на основе имунной реакции создаются биосенсоры.

Электроаналитические методы в биомедицинских исследованиях

Еще на заре развития электрохимических методов анализа (ЭМА) объекты биологии, медицины и фармации привлекали внимание исследователей. Это прежде всего относится к классической полярографии, в меньшей мере к потенциометрии и вольтамперометрии. В 30-х годах XX века чешский исследователь Брдичка обнаружил каталитические волны белков в аммонийно-аммиачных буферных растворах в присутствии солей кобальта. Впоследствии этот метод был применен в медицине для диагностики рака, а затем и для других заболеваний. Он известен как серологическая реакция Брдички. Достижения классичекой полярографии в биологии, медицине и фармации обобщены в монографии М. Бржезины и П. Зумана, которая оказала самое плодотворное влияние на развитие этой области ЭМА. Большая часть пионерских работ в этой области анализа были выполнены исследователями, которые имели базовое образование фармацевта, что не могло не сказаться на применении этого метода в биомедицинских исследованиях.. С помощью методов ВА определяли различные метаболиты, белки, идентефицировали ферменты, оцнивали их активность по продуктам ферментативных реакций, исследовали процессы в микроорганизмах, суюклеточных культурах, в тканях по продуктам их жизнедеятельности. Кроме того, эти методы применяли для получения электрохимических характеристик веществ, учавствующих в переносе электронов в процессе дыхания и фотосинтеза, при моделировании окислительно восстановительных процессов в живой клетке, а также для исследования структурных особенностей биологических макромолекул и биомембран и т.д. В 60-х годах с появлением ионселективных электродов (ИСЭ) стало возможным потенциометрическое определение катионов и анионов как in vitro, так и in vivoв растворах, включая цельную кровь.

Прогресс в области ионометрии и разработки новых ИСЭ с улучшеными характеристиками, в частности, на основе полевых транзисторов привел к появлению разнообразных потенциометрических сенсоров, устройств и приборов для определения органических и неорганических, в том числе и лекарственных, соединений в различных условиях (в потоке жидкости, в очень малых объемах растворов и т.д.). Современная биохимическая лаборатория иеммт возможность использовать ионометрические установки как для прямого определения, так и для потенциометрического титрования в водных и неводных средах.

Достигнутые успехи не означали отсутствие проблем, обуслосленных перманентными требованиями к необходимой воспроизводимости, надежности, чувствительности, а также селективности определений, особенно для электродов-сенсоров с амперометрическим откликом, которые порой трудно достигались, поскольку компоненты, определялись в сложных по составу матрицах. Потенциометрические сенсоры на основе мембран с включенными в них электроактивными органическими соединениями показали достаточно высокую селективность при определении этих же соединений в испытуемом растворе. Их используют при анализе порошков, суппозитарий, таблеток и других лекартсвенных форм; при этом не требуется сложнаыя пробоподготовка.

Новый этап развития ЭМА применительно к обсуждаемым объектам связан с применением имообилизированных биоматериалов как реагентов нового поколения для модифицирования электродов и создания на их основе биосенсоров.

Функциональо биосенсоры сопоставимы с датчиками живого организма - биорецепторами, способными преобразовывать все типы сигналов, поступающие из окружающей среды, в электрические, которые легко измерить.

Биосенсоры, с одной стороны, можно рассматривать как устройства, работающие на принципах биологического распознавания определяемых молекул или других частиц. Поэтому их можно отнести к категориям биологических и биохимических методов анализа.

С другой стороны, биосенсоры - это биоэлектронное устройство, включающее чувствительный элемент, тесно связанный с физическим преобразователем либо интегрированный с ним, чаще всего с электродом. Интерес к биосенсорам обусловлен их широким потенциальным применением в контроле состояния окружающей среды и охране здоровья человека.

Многообразие биосенсоров объясняется различной природой биоматериала, типом физического преобразователя, способами регистрации электрического сигнала. Сама их конструкция может быть тесно связана с применением.

Что касается метода регистрации, то при интегральной оценке развития ЭМА периода последних 5-15 лет в аспектах биологии и медицины, можно увидеть возрастание удельного веса ВА и родственных методов среди других.

Сейчас наблюдается заметное проникновение идей супрамолекулярной химии в область ЭМА. Молекулярный дизайн и нанотехнология в создании новых электродов и на их основе микроаналитических систем для целей медицинской диагностики теперь рассматривают как еще один путь развития электроанализа и расширения сфер его применения. Самоорганизующиеся монослои (СОМС) на поверхности электродов - это частный случай высокоупорядоченных слоев с точно контролируемой толщинй и направленной ориентацией молекул - представляют уникальную возможность для изучения фунтдаментальных аспектов электроаналитической химии, включая процессы накопления определяемого компонента, селективность СОМС, факторы, влияющие на величину сигнала.

С помощью субстратных биосенсоров определяют широкий круг различных физиологически важных соединений или их метаболитов в растворе или непосредственно в организме человека: глюкозу, мочевину, спирты, органические кислоты и т.д., и решают проблему диагностики заболеваний.

Структура биоаналитики: методы электроанализа в определении компонентов в объемах биомедицинского назначения и фармации

Способ определения

Определяемый компонент

Тип сенсора

Потенциометрия

H+, K+, NH4+, Na+, Cl-, Mg+, Ca+, NO2-, NO3-, катионы и анионы органичеких оснований и кислот, аскорбиновая кислота, спирты, мочевина, физиологически активные амины, антибиотики, кетоновые тела и др.

Стеклянные электроды, твердотельные электроды, ИСЭ, ИСЭ не основе полевых транзисторов, газочувствительный эл-д, ИСЭ на основе полимерных мембран с иммобилизированным активным веществом, бислойных липидныхз мембран, биосенсоры и др.

Амперометрия (вольтамперометрия и ее модификации)

NO, антиоксиданты, аскорбиновая кислота, ферменты, ДНК, интеркаляторы, антитела, возбудители болезней (вирусы), лекарственные соединения и др.

ХМЭ-сенсоры с иммобилизированными реагентами, в том числе с откликом на принципах полеклярного распознавания, ДНК-сенсоры, иммуносенсоры, биосенсоры, амперометрические сенсоры с СОМС, бислойными мембранами, реконструированными ферментами и др.

Амперометрия в сочетании с ВЭЖХ, ПХА, микродиализом и капиллярным электрофорезом (детекторы в потоке жидкости)

Нейропереносчики, катехоламины, компоненты плазмы крова, межклеточной жидкости и клеток в микрообъемах жидкости, лекарственные средства (вопросы фармакокинетики)

Ультрамикроэлектроды (металлические, угольно-волоконные, screen-printed), угольно-пастовые электроды, металлические и металлоксидные электроды с каталитическим откликом, электродная система жидкость/жидкость и др.

Хроноамперометрия

Гормоны, антибиотики, интеркаляторы, лекарственные соединения

Сенсоры на основе ХМЭ, СОМС, бислойные липидные мембраны и др.

Кулонометрия (кулонометрические детекторы)

Объекты фармации, нейропереносчики, антиоксиданты

Активные металлические электроды, инертные электроды+источник кулонометрического титранта

Интерес представляет амперометрический сенсор на гемоглобин в цельной крови. Его быстрый отклик стабилен и воспроизводим и обусловлен окислением гемоглобина при фиксированном потенциале на стеглоуглеродном электроде, покрытом слоем полимера на основе метиловой сини. Этот полимер образуется на поверхности электрода при циклическом изменении потенциала в некотором диапазоне, зхависящем от состава раствора.

Из последних достижений в конструировании электрохимических сенсоров можно отметить создание с использованием планарной технологии микросенсорных батарей на основе ИСЭ для определения концентраций ионов водорода и калия в кровотоке работающего сердца. Такие устойства могут найти применение в медицине, в частности при хирургическом вмешательстве в области миоракда.

В таблице в качестве примера дан перечень основных компонентов, определяемых методами электроанализа в объектах биомедицинского назначения и фармации, который в целом отражает структуру области биоэлектроники.

Интерес представляют электрохимические сенсоры на основе ДНК и их фрагментов. Отклик таких ДНК-сенсоров формируется по-разному. Если имообилизирована однонитивая ДНК на поверхности электрода, то при введении в раствор она гибридизируется с комплиментарной нитью определяемого компонента и дает амперометрический отклик. Однонитивая ДНК может быть включена при этом либо в угольную пасту электрода, дибо иммобилизированна на поверхности золотого электрода за счет самообразующихся слоев с помощью меркаптогексильного фрагмента. Вместо однонитивой ДНК в сенсорах используют их фиксированный фрагмент, т.е. последовательность оснований, или олигомер (20 или 40 оснований), полученный синтетически. Чтобы зафискировать событие взаимодействия олигомера с определяемым компонентом, на электроде закрепляют метку - чаще всего какой-нибудь комплекс металла ( руьений, кобальт, железо и т.д.) с органическим лигандом (димирил, фенантролин), восстанавливающийся на этом электроде. Ток этой реакции чувствителен к событию комплиментарного взаимодействия.

ДНК-сенсор конструируют и на основе двухнитивой ДНК. В этом случае возможно определение тех компонентов, которые нарушают структуру ДНК как интеркаляторы. Возможны и другие прощессы, нарушающие структуру ДНК, что отражается на электрохимических свойствах этого типа биослоя.

Большинство рассмотренных биосенсоров дают устойчивый отклик не только в условиях стационарной жидкости, но и в потоке.

Сейчас в ряде областей аналитической химии, биологии и медицины ощущается потребность в миниатюрных сенсорах на основе электрохимических микропреобразователей, созданных по технологии интегральных схем. Миниатюризация сенсоров в сочетании в их высокой селективностью и чувствительностью, достигаемых за счет использования биоматериалов, позволит решать важные задачи биологии и медицины, в том числе и определение отдельных крупных молекул.

Заключение

Развитие методов аналитической химии в биомедицинских исследованиях ускоряется с каждым годом. При этом основными задачами остаются экспрессность и точность метода, возможность проведения анализа в полевых условиях, снижение его стоимости. Кроме того, разработка новых методов невозможна без тесного сотрудничества аналитиков и медиков. К сожалению, на сегодняшний день эти две группы специалистов развиваются параллельно, не взаимодействуя. Но без сомнения можно сказать, что, объединившись, исследователи поднимут биомедицинский анализ на качественно новый уровень, на котором будут учитываться в полной мере и биологические закономерности организмов, и химические закономерности.

Список литературы

1. Золотов Ю.А. История и методология аналитической химии. «Академия», 2008. С. 212-218

2. Журнал аналитической химии. 2000г. - №2 с.208-211,№11 с. 1133-1143; 2001г. - №10 с.1015-1031; 2003г. - №7 с. 722-723; 2005г.- №3 с.230-246; 2007г. - №1 с.71-75, с.76-84; 2008г. - №2 с. 118-136; 2010г. - №8 с.843-850, №10 с. 968-994.

Страницы: 1, 2