скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Адсорбция полимеров на неорганических носителях скачать рефераты

В работе [15] адсорбция катионного полиэлектролита сополимера стирола с диметиламинопропилмалеимидом разной молекулярной массы на отрицательно заряженной поверхности рассчитана по изменению заряда и потенциала поверхности методом капиллярной электрокинетики. Исследования показали, что структура адсорбционного слоя зависит от молекулярной массы полиэлектролита и его концентрации в объеме, а также от конформации макромолекул в растворе.

При адсорбции на непористых сорбентах между максимальной адсорбцией и молекулярным весом существует зависимость:

AS = KMб

где К и б - константы.

Уравнение позволяет оценить конформацию адсорбированной полимерной цепи. Коэффициент б уменьшается с ростом молекулярного веса полимера, что свидетельствует о смене конформаций на поверхности от свернутой к плоской.

1.2 Общая характеристика геллана

1.2.1 Химические свойства

Геллан был открыт сравнительно недавно, в 1977 году. Получают его путем ферментации, провоцируемой бактерией Sphingomonas elodea. При производстве толщина и твердость геля геллана варьируются с помощью изопропилового спирта. Природный геллан имеет 2 ацильных заместителя в глюкозном остатке. При повышенной температуре и в щелочной среде происходит деацелироване. Такой деацелированный геллан (часто в литературе просто «геллан») используется в пищевой промышленности как гелеобразующий агент и модификатор структуры [16].

Молекулярная масса геллана составляет 70000 дальтон, при этом 95% от массы превышает 500000 дальтон. По химическому строению геллан является внеклеточным гетерополисахаридом. Повторяющееся звено в макромолекулярной структуре состоит из остатков 4 полисахаридов: 2х в-D-глюкоз, в-D-глюкуроновой кислоты и б-L-рамнозы [17]:

Рисунок 3 - Строение звена деацелированного геллана.

Между собой тетрасахаридные фрагменты соединены б 1>3 гликозидными связями. Примерный состав: 60 % глюкозных остатков, 20 % остатков от рамнозы и 20 % от глюкуроновой кислоты.

Карбоксильная группа в глюкуроновой кислоте проявляет все характерные реакции карбоновых кислот, но при несколько отличных условиях. Например, можно получить бензиловый эфир, если проводить реакцию с использованием тетрабутиламмониевого производного природного геллана в реакции взаимодействия с бензилбромидом в диметилсульфоксиде [18]:

Сшитый геллан способен набухать в воде, но не растворяется полностью. Сшивающими агентами могут служить, например, ЭХГ, ЭДК. Ниже приведена реакция сшивания с ЭХГ:

Gel-OH + CH2-CH-CH2-Cl > Gel-O-CH2-CH(OH)-CH2-Cl + NaOH >

> Gel-O-CH2-CH-CH2 + NaCl + H2O

+

Gel-OH

v

Gel-O-CH2-CH(OH)-CH2-O-Gel

1.2.2 Гелеобразование геллана

При образовании геля геллана возникают упорядоченные области (блоки), состоящие из параллельных рядов [19-20]:

а

б

Рисунок 4 - Самосшитый геллан: а - связь двойных цепей в агрегаты, б - молекулярная модель гидрогеля (характеристики блока: длина 12,48 нм; ширина 4,05 нм; высота 8,46 нм).

Механизм гелеобразования геллана является предметом многих дискуссий. Тем не менее, есть схожее мнение, что при повышенной температуре происходит термообратимый конформациооный переход из одинарной структуры в двойную, более упорядоченную [21].

Рисунок 5 - Схематическое представление золь-гель перехода геллана в отсутствие и присутствии моновалентных катионов.

При высокой температуре макромолекулы геллана существуют в виде расплетенных единичных клубков (золь-I). При охлаждении цепи геллана ассоциируются с образованием двойной спирали и упорядоченной структуры. Однако такая упорядоченная структура еще не приводит к образованию сетки (золь-II). Гелеобразование имеет место только в присутствии катионов. Это связано с тем, что температура фазового золь-гель перехода становится ниже температуры конформационного перехода спираль-клубок. Однако для геллана, который проявляет два отдельных перехода (золь-I, золь-II и гель) не характерен термический гистерезис при охлаждении и нагревании . Разница между температурой перехода спираль-клубок и золь-гель уменьшается с увеличением концентрации добавленной соли. Водный раствор геллана переходит в гель при температуре 30-35С [22], который плавится при 90 С.

По наличию ацильных групп геллан бывает 2х форм: низкоацильный и высокоацильный. Из высокоацильной формы получаются очень эластичные и не хрупкие гели, а из низкоацильной - твердые, хрупкие и неэластичные[23].

Как уже отмечалось выше, в присутствии катионов геллан превращается в гель [24-25]. Например, гелеобразование в присутствии катионов натрия используется для определения молекулярной массы геллана. Катионы Nа+ препятствуют нежелательной агрегации и микрогелеобразованию, что является основными проблемами при определении молекулярной массы. Бивалентные катионы благоприятствуют образованию двойной спирали [26].

Добавление хелатирующих агентов к раствору геллановой камеди увеличивает температуру гелеобразования, но ухудшает реологические свойства полученного геля [27].

Геллан в данное время производится компанией Kelco в Японии и США. Продукт имеет 4 вида и выпускается под названиями: Келкогель (геллановая камедь), Гельрит (с ионами К+), Фитогель и Гель-Гро [17] . Келкогель используется в пищевой промышленности в качестве загустителя, эмульгатора и стабилизатора. В номенклатуре добавок его номер Е418. Остальные 3 вида используются в микробиолигии как альтернатива агар-агару. Геллан выдерживает температуру до 120оС, что делает его незаменимым при культивации термофильных организмов.

2 Экспериментальная часть

2.1 Методика проведения эксперимента и расчеты

Керны были предварительно просеяны и разделены по следующим фракциям: 2 мм, 1мм, 500 мкм, 250 мкм, 125 мкм, 45 мкм и меньше 45 мкм. Для работы были выбраны пески Харасан с размерами частиц 45 и 125 мкм. Для активации поверхности одну часть керновых материалов промывали горячей соляной кислотой (HCl), затем многократно дистиллированной водой для удаления следов HCl. Вторую часть использовали без предварительной промывки для сравнительных целей.

Фракционирование сорбентов осуществляли на приборе Type AS 200 control (Германия).

Размеры частиц и структуру поверхности частиц оценивали с помощью низковакуумного растрового электронного микроскопа JEOL JSM - 6490LA (Япония). Качественный и количественный анализ состава керна проводили на рентгеновском дифрактометре X'Pert MPD PRO (PANalytical, Голландия).

Кондуктометрическое титрование полимеров проводили на рН/кондуктометре «Mettler Toledo MPC 227» (Швейцария) при комнатной температуре. Кинетику адсорбции изучали по методике, описанной в работе [28]. Керн в количестве 10г загружали в коническую колбу объемом 250 мл с раствором полимера известной концентрации. Кинетику адсорбции изучали при постоянном перемешивании при комнатной температуре. В определенный момент времени перемешивание останавливали и отбирали 5 мл раствора полимера, который затем центрифугировали и определяли его концентрацию методом кондуктометрического титрования. Концентрацию адсорбированного полимера вычисляли по формуле:

где C0 - исходная концентрация полимера в растворе, моль/л;

Ct - равновесная концентрация полимера, оставшегося в растворе в момент времени t, моль/л;

Cадс - концентрация адсорбированного керном полимера, моль/л.

Равновесную концентрацию полимера Ct определяли кондуктометрическим титрованием водного раствора определенной концентрации из состава поликомплекса.

Величину сорбции [29] рассчитывали по формуле:

,

где C0 - исходная концентрация полимера в растворе, моль/л; Ct - равновесная концентрация полимера, оставшегося в растворе в момент времени t, моль/л; V - общий объем раствора, л; m - масса сорбента, г.

Для обработки кинетики сорбции геллана использовали три модели, описывающие процессы адсорбции на границе раздела фаз “твердое тело - жидкость”.

Изотерму адсорбции на неоднородной поверхности определяли по Фрейндлиху [30]:

где СF - концентрация сорбированного полимера;

Ct - равновесная концентрация полимера, оставшегося в растворе в момент времени t;

KF и 1/n - константы, определяемые отрезком на оси ординат, отсекаемым касательной, проведенной к начальному участку кривой, и углом наклона, соответственно.

Изотерма Темкина [30] описывает линейную зависимость:

,

где А и B - константы Темкина.

Изотерма Лэнгмюра [30] для мономолекулярного слоя описывается следующей формулой:

где b - максимальное количество адсорбированного полимера;

KL - константа, определяемая из угла наклона начального участка изотермы.

2.2 Результаты и их обсуждения

Для определения количества адсорбированного полимера на кернах использована реакция комплексообразования между комплементарными макромолекулами.

При этом состав образующихся полимер-полимерных комплексов определен кондуктометрическим титрованием одного полимера другим.

Полимер-полимерные комплексы содержат цепи, состоящие из комплементарных макромолекул, и являются устойчивыми макромолекулярными соединениями, свойства которых отличаются от свойств исходных полимеров.

Рисунок 6 - Кондуктометрическое титрование 20 мл геллана (С = 1,5·10-3 М) растворами полимеров

Из рисунка 6 видно, что точка перегиба кривой приходится на объем ПАК V=2,5 мл, то есть для того, чтобы оттитровать 1 мл геллана требуется 2,5 мл 2,5·10-2 моль/л ПАК. Это, в свою очередь, свидетельствует об образовании комплекса состава [ПАК]:[геллан]=1:1. В дальнейшем, исходя из состава поликомплекса по формуле: , где V1 и N1 объем (мл) и концентрация (моль/л) полимера-1, V2 и N2 объем (мл) и концентрация (моль/л) полимера-2 ушедшего на титрование определяли концентрацию полимера-2. Разница между исходной концентрацией полимера и найденной кондуктометрическим титрованием концентрацией дает концентрацию адсорбированного полимера. Керн представляет собой цилиндрическую колонку плотной горной породы. На рисунке 7 представлены фотографии цельных (а) и измельченных керновых материалов (б, в).

а б в

Рисунок 7 - Внешний вид керновых материалов

Данные по качественному и количественному составу кернов показывают, что керн из месторождения Харасан содержит оксида кремния SiO2 80-90%. Помимо оксида кремния в составе керна встречаются и другие соединения, но в меньших количествах: Ca(OH)2, Al2O3, Al2SiO5, FeO, MgO, Mg2Si2O6, Na[AlSi3O8], KFeO и другие.

С помощью сканирующего электронного микроскопа проведен элементный анализ всех исходных кернов (Рисунок 8).

Рисунок 8 - Элементный анализ исходного керна с месторождения Бакланий Северный

Как видно из рисунка 8, состав керна состоит в основном из кремния и кислорода в виде оксида кремния (IV). В состав керна также входят соединения оксидов алюминия, магния и кальция.

Для керна с месторождения Харасан проведены аналогичные исследования. Обнаружено, что основным соединением, составляющим керн, является диоксид кремния. Также в состав керна входят соединения алюминия, натрия, углерода и в небольших количествах обнаружены железо, калий.

На рисунке 9 приведены микрофотографии керна месторождения Харасан до и после процесса адсорбции геллана. Видно, что после адсорбции поверхность керна покрыта колониями геллана.

Рисунок 9 - Микрофотографии структуры поверхности предварительно необработанного керна с месторождения Харасан «до» (А) и «после» (Б) адсорбции геллана (увеличение в 700 раз)

Рисунок 10 - Микрофотографии структуры поверхности керна с месторождения Бакланий Северный «до» (А) и «после» (Б) активации поверхности горячей 1 н HCl

Изменения в структуре и составе керна после промывки его горячей соляной кислотой подтверждаются и данными рентгенофазового анализа. Из рисунка 11 видно появление новых, и уменьшение интенсивности других фаз. Это, по-видимому, обусловлено удалением из поверхности частиц керна пленок и различных микропримесей, а также химической модификацией поверхности.

Рисунок 11 - Рентгеновская дифрактограмма керна из месторождения Харасан «до» (779) и «после» (793) активации поверхности горячей HCl

Известно, что адсорбция полимеров на поверхности обуславливается как электростатическими, так и специфическими химическими силами [31]. На рисунке 12 представлены графики зависимости концентрации адсорбированного на кернах полимеров от времени контакта.

Скорость адсорбции полимеров зависит от молекулярной массы полимера и типа адсорбента. Для непористых адсорбентов характерно быстрое установление равновесия. Поскольку используемые в работе керны не содержат пор, а только лишь шероховатости на поверхности, то и в нашем случае адсорбция протекает очень быстро - в течение нескольких минут.

На рисунке 12 видно, что на предварительно активированном HCl керне сорбируется большее количество геллана, поскольку создание дополнительных активных центров способствует лучшей адсорбции полимера.

Рисунок 12 - Кинетика адсорбции геллана на поверхности кернов. СGel=1,5·10-3 моль/л, Т=298К

Также наблюдается некоторое падение значения концентрации адсорбированного полимера после насыщения.

Из литературных данных известно [30], что с кинетической точки зрения адсорбция является обратимым процессом, то есть одновременно с адсорбцией происходит и десорбция.

В начале процесса скорость адсорбции больше, чем скорость десорбции.

По мере насыщения поверхности адсорбента устанавливается состояние адсорбционного равновесия, которое характеризуется равенством скоростей адсорбции и десорбции.

При адсорбции геллана на 125 фракциях десорбция не наблюдается. Из этого следует, что геллан прочнее держится на более крупных частичках керна, что связано, с его высокой молекулярной массой и строением звена. Тогда как с более мелких частичек смыть полимер гораздо легче.

На рисунке 13 приведены адсорбционные емкости обработанного керна месорождения Харасан.

Адсорбционная емкость керна показывает, какое количество полимера адсорбируется на 1 г керна. Из графика видно, что 125 фракция Харасана проявляет большую способность адсорбировать геллан.

Рисунок 13 - Сорбционные емкости керна с месторождения Харасан

Адсорбция геллана на поверхности керна из месторождения Харасан протекает эффективнее, чем на поверхности керна месторождения Бакланий Северный. Это, по-видимому, связано с большим содержанием оксида кремния (80-90%) на поверхности керна из месторождения Харасан, чем керн из месторождения Бакланий Северный (30-40%).

Поскольку единой теории, достаточно корректно описывающей все виды адсорбции на разных поверхностях раздела фаз, пока не существует, то для обработки кинетических кривых адсорбции нами использованы некоторые наиболее распространенные теории, описывающие отдельные типы адсорбции на поверхности раздела «твердое тело - раствор».

Модели Фрейндлиха и Темкина учитывают, что поверхность керна неоднородна, между адсорбированными частицами имеет место взаимодействие, а активные центры не являются полностью независимыми друг от друга [32]. Тогда как в теории мономолекулярной адсорбции Лэнгмюра имеется ряд допущений, которые в значительной степени идеализируют и упрощают процессы, протекающие при адсорбции.

На рисунках 14-16 приведены графики, полученные с использованием вышеприведенных уравнений. Все точки изотерм Фрейндлиха лежат в одной области, поэтому на графике приведены только изотермы для модифицированных поверхностей. Из изотерм Фрейндлиха хорошо видно, что количество адсорбированного геллана больше для модифицированной поверхностей Харасана для 45 фракции и для Баклания Северного для 125 фракции. Все точки в этих моделях хорошо ложатся на прямую линию. Следует отметить, что все три модели изотерм адсорбции также подтверждают утверждение о лучшей адсорбционной способности керна месторождения Харасан.

Рисунок 14 - Изотермы адсорбции геллана, полученные по уравнению Фрейндлиха, для модифицированных поверхностей кернов.

Рисунок 15 - Изотермы адсорбции геллана, полученные по уравнению Лэнгмюра.

Наклон изотерм Лэнгмюра говорит сам за себя: полученные прямые доказывают, что данная модель не применима для описания процессов адсорбции геллана на керновых материалах.

Рисунок 16 - Изотермы адсорбции геллана, полученные по уравнению Темкина, для модифицированных поверхностей кернов.

Таким образом, была изучена адсорбция геллана на непористых сорбентах неорганического происхождения. Полученные константы уравнениий Лэнгмюра, Фрейндлиха и Темкина приведены ниже в таблице.

Таблица 1 - Константы изотерм Фрейндлиха, Лэнгмюра и Темкина для геллана.

Наименование керна

Наименование модели и константы

Фрейндлих

Темкин

Лэнгмюр

KF, мг/л

1/n

KL, мг/л

b, мг/л

В, мг/л

А, л/мг

НХ 45 мкм

312,71

88,5374

88,5374

536,22

312,71

0,01129

ОХ 45 мкм

583,81

89,3448

89,3448

927

583,81

0,01119

НБС 45 мкм

434,3

89,0079

89,0079

549

434,3

0,01123

ОБС 45 мкм

455,23

88,6386

88,6386

894

455,23

0,01128

НХ 125 мкм

269,65

88,2936

88,2936

602

269,65

0,01133

ОХ 125 мкм

726,44

88,2623

88,2623

926,8

726,44

0,01133

НБС 125 мкм

204,07

86,2645

86,2645

755

204,07

0,01159

ОБС 125 мкм

551,24

89,4410

89,4410

867

551,24

0,01118

Полученные результаты представляют интерес для дальнейшей работы по изучению полимер-протектированных катализаторов на основе геллана.

ЗАКЛЮЧЕНИЕ

1. Методом сканирующей электронной микроскопии и рентгенодифрактометрии установлен качественный и количественный состав кернов.

2. Опробирована новая методика определения количества адсорбированных полимеров на поверхности кернов, суть которой заключается в проведении интерполимерных реакций между комплементарными макромолекулами. Методом кондуктометрического титрования определены составы интерполимерных комплексов.

3. Показано влияние предварительной активации поверхности на кинетику адсорбции полимера. Обнаружено, что предварительное промывание керновых материалов месторождений Бакланий Северный и Харасан горячей соляной кислотой увеличивает адсорбцию полимеров.

4. Получены кинетические кривые адсорбции полимеров на поверхности керновых материалов. Установлено, что наибольшей сорбционной емкостью обладает керн месторождения Харасан с размером частиц 125 мкм.

5. Определены изотермы адсорбции и константы уравнений Фрейндлиха, Темкина и Лэнгмюра. Установлено, что изотермы адсорбции полимеров на поверхности кернов хорошо описывается уравнением Фрейндлиха и Темкина.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Липатов Ю.С., Сергеева Л.М. Адсорбция полимеров - Киев: Наукова думка. - 1972. - 195с.

2. Федорова А.Ф., Шиц Е.Ю., Портягин А.С. Исследование возможности применения растворов полимеров в качестве агентов вытеснения нефти на месторождениях с аномально низкими пластовыми температурами // Нефтегазовое дело - 2008. - С.1-12.

3. Миловидов К.Н., Т.И. Колчанова. Мировая практика применения методов повышения нефтеотдачи // Нефтегазопромысловое дело - 2002. - №8. - С.46-48.

4. Doll J., Freeman D. Monte Carlo Methods in Chemistry // Computing in Science and Engineering, 1994 - V.1. - P.2-32.

5. Соловьев В.А., Сачко В.Н., Шермергор Т.Д. Теория отслаивания пленок и защитных покрытий // Поверхность. Физика, химия, механика, 1982. - №10. - C.51-58.

6. Takahashi A., Kawaguchi M. The structure of macromolecules adsorbed on interfaces // Advances in polymers science, 1982 - № 46. - P.5.

7. Jada A., Akbour R., Douch J. Surface charge and adsorption from water onto quarz sand of humic acid // Chemosphere. - 2006. - V. 64. - P.1287-1295.

8. Ellerstein S., Ullman R. // J. Polym. Sci. - 1961. - V. 55, №161. - P.123-155.

9. Howard G.J., Meconel P. // Ibid. - V.71, №9. - P.2974-2995.

10. Stromberg R.R., Quasius A.R., Toner S.D., Parker M.S. // J. Res. Nat. Bura Standards. - 1959. - V.62, №2. - P.71-77.

11. Солтыс М.Н., Малеев И.И., Полонский Т.М., Микитюк И.М. Адсорбция полиметакриловой кислоты на окиси алюминия // Поверхностные явления в полимерах. Киев: Наукова думка. - 1970. - С.65-70.

12. Gilliland E.R., Guttof E.B. // J. Appl. Polym. Sci. - 1960. - V. 3, №7. - P.26-42.

13. Botham R., Thies C. // J. Colloid and Interface Sci. - 1961. - V. 55, №1. - P.1-7.

14. Тульбович В.И., Приймак Э.М. // Журнал физ. хим. - 1969. - Т. 43, №4. - С.960-962.

15. Ермакова Т.Б., Сергеева И.П. Структура и свойства адсорбционных слоев катионных полиэлектролитов на отрицательно заряженной поверхности // IX Всероссийская конференция. Структура и динамика молекулярных систем. - 2002.

16. Nitta Y., Takahashi R., Nishinari K. Viscoelasticity and phase separation of aqueous Na-type gellan solution // Biomacromolecules. - 2010. - V.11. - P.187-191

17. Popa M., Bajan N., Popa A.A., Verestiuc L. The preparation, characterization and properties of catalase immobilized on crosslinked Gellan // Journal of Macromolecular Science, Part A: Pure and Applied Chemistry. - 2006. - V.43. - P.355-367.

18. Ishwar B., Shrikant S., Parag S., Rekha S. Gellan Gum: fermentative production, downstream processing and applications // Food Technol. Biotechnol. - 2007. - V. 45. - P.341-354.

19. Desideri P., Crescenzi V., Yuguchi Y., Urakawa H., Kajiwara K .Solution and gelling properties of gellan benzyl esters // Macromolecules. - 1999. - V.32. - P.7109-7115.

20. Desideri P., Crescenzi V., Yuguchi Y. Synthesis and physicochemical characterization of gellan gels mariella dentini // Macromolecules. - 2001. - V.34. - P.1449-1453

21. Tanaka S., Nishinari K. Unassociated molecular chains in physically crosslinked gellan gels // Polymer Journal. - 2007. - V.39. - P.397-403.

22. Amici E., Clark A.H., Normand V., Johnson N.B. Interpenetrating network formation in gellan-agarose gel composites // Biomacromolecules. - 2000. - V.1. - P.721-729.

23. Shinnosuke K., Yoko N., Katsuyoshi N. Large deformation analysis of gellan gels // Journal of Applied Physics. - 2007. - V.102, Is. 4.

24. Urakawa H., Kajiwara K. Conformational transition of polysaccharide sodium-gellan gum in aqueous solutions // Technical Evaluation Report Page Compiled by ICF Consulting for the USDA National Organic Program. - 2006.

25. Atkin N., Abeysekera R.M., Kronestedt-Robards E.C., Robards A.W. Direct visualization of changes in deacylated Na(+) gellan polymer morphology during the sol-gel transition // Biopolymers. - 2000. - V.54(3). - P.195-210.

26. Miyoshi E., Takaya T., Williams P.A., Nishinari K. Effects of sodium chloride and calcium chloride on the interaction between gellan gum and konjac glucomannan // J. Agric. Food Chem. - 1996. - V.44. - P.2486?2495.

27. Camelin I., Lacroix C., Paquin C., Prbvost H., Cachon R., Diviest C. Effect of chelatants on gellan gel rheological properties and setting temperature for immobilization of living bifidobacteria // Biotechnol. Bog. - 1993. - V. 9. -P.291-297.

28. Sabhapondit A., Borthakur A., Haque I. Adsorption behavior of poly(N,N-dimethylacrilamide-co-Na 2-acrylamido-2-methylpropanesulfonate) on sand surface // J. of Applied Polymer Science. - 2004. - V.91. - P.2482-2490.

29. Пимнева Л.А., Нестерова Е.Л. Изотермы сорбции ионов бария, меди и иттрия на карбоксильном катионите КБ-4ПХ2. // Современные наукоемкие технологии. - 2008. - №4. - С.1-5.

30. Воюцкий С.С. Курс коллоидной химии. Москва: Химия. - 1976. - 512с.

31. Sabhapondit A., Borthakur A., Haque I. Adsorption behavior of poly(N,N-dimethylacrylamide-co-Na-2-acrylamido-2-methylpropanesulfonate) on sand surface // Journal of Applied Polymer Science. - 2004. - V.91. - P.2482-2490.

32. Brandrup J., Immergut E.H. Polymer handbook. London. - 1975.

Страницы: 1, 2