скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Жидкие кристаллы как основа развития современных технологий скачать рефераты

p align="left">Чтобы осознать этот процесс, достаточно вспом-нить о часах или микрокалькуляторах с жидкокристалли-ческими индикаторами. Но это только начало. На смену традиционным и привычным устройствам идут жидко-кристаллические системы отображения информации. Так часто бывает, технические потребности не только стимулируют разработку проблем, связанных с практи-ческими приложениями, но и часто заставляют переос-мыслить общее отношение к соответствующему разделу науки. Так произошло и с жидкими кристаллами. Сейчас понятно, что это важнейший раздел физики конденсиро-ванного состояния.

Другим важным обстоятельством является то, что проводимость в жидких кристаллах носит ионный харак-тер. Это означает, что ответственными за перенос элек-трического тока в жидких кристаллах являются не электроны, как в ме-таллах, а гораздо более массивные частицы. Это поло-жительно и отрицательно заряженные фрагменты моле-кул (или сами молекулы), отдавшие или захватившие из-быточный электрон. По этой причине электропроводность жидких кристаллов сильно зависит от количества и хими-ческой природы содержащихся в них примесей. В част-ности, электропроводность нематика можно целена-правленно изменять, добавляя в него контролируемое количество ионных добавок, в качестве которых могут выступать некоторые соли.

Из сказанного понятно, что ток в жидком кристалле представляет собой направленное движение ионов в системе ориентированных палочек-молекул. Если ионы представить себе в виде шариков, то свойство нематика обладать проводимостью вдоль директора в p раз больше, чему, представляется совершенно естественным и по-нятным. Действительно, при движении шариков вдоль директора они испытывают меньше помех от молекул-палочек, чем при движении поперек молекул-палочек. В результате чего и следует ожидать, что продольная проводимость будет превосходить поперечную про-водимость.

Более того, обсуждаемая модель шариков-ионов в системе ориентированных палочек-молекул с необходи-мостью приводит к следующему важному заключению. Двигаясь под действием электрического тока поперек направления директора (считаем, что поле приложе-но поперек директора), ионы, сталкиваясь с молекула-ми-палочками, будут стремиться развернуть их вдоль направления движения ионов, т. е. вдоль направления электрического тока. Мы приходим к заключению, что электрический ток в жидком кристалле должен приво-дить к переориентации директора.

Эксперимент подтверждает выводы рассмотренной выше простой механической модели прохождения тока в жидком кристалле. Однако во многих случаях ситуа-ция оказывается не такой простой, как может показать-ся на первый взгляд.

Часто постоянное напряжение, приложенное к слою нематика, вызывает в результате возникшего тока не однородное изменение ориентации молекул, а периоди-ческое в пространстве возмущение ориентации директо-ра. Дело здесь в том, что, говоря об ориентирующем молекулы нематика воздействии ионов носителей тока, мы пока что пренебрегали тем, что ионы будут вовле-кать в свое движение также и молекулы нематика. В ре-зультате такого вовлечения прохождение тока в жид-ком кристалле может сопровождаться гидродинамичес-кими потоками, вследствие чего может установиться пе-риодическое в пространстве распределение скоростей течения жидкого кристалла. Вследствие  обсуждав-шейся в предыдущем разделе связи потоков жидкого кристалла с ориентацией директора в слое нематика воз-никнет периодическое возмущение распределения директора.

1.3. Флексоэлектрический эффект

Говоря о форме мо-лекул жидкого кристалла, мы пока аппроксимировали ее жесткой палочкой. Рассматривая модели структур молекул, можно прийти к заключению, что не для всех соединений приб-лижение молекула-палочка наиболее адекватно их фор-ме. C формой молекул связан ряд интересных, наблюдаемых на опыте, свойств жид-ких кристаллов. Особого внимания заслуживают свойства жидких кристаллов, связанные с отклоне-нием его формы от простейшей молекулы-палочки, про-являющемся в существовании  флексоэлектрического эффекта.

Открытие флексоэлектрического эф-фекта, как иногда говорят о теоретических предсказа-ниях, было сделано на кончике пера американским физи-ком Р. Мейером в 1969 году.

Рассматривая модели жидких кристаллов, образо-ванных не молекулами-палочками, а молекулами более сложной формы, он задал себе вопрос: «Как форма молекулы может обнаружить себя в макроскопических свойствах?» Для конкретности Р. Мейер предположил, что молекулы имеют грушеобразную или банановидную форму. Далее он предположил, что отклонение формы молекулы от простейшей, рассматривавшейся ранее, сопровождается возникновением у нее электрического дипольного момента.

Возникновение дипольного момента у молекулы не-симметричной формы - типичное явление и связано оно с тем, что расположение «центра тяжести» отрица-тельного электрического заряда электронов в молекуле может быть несколько смещено относительно «центра тяжести» положительных зарядов атомных ядер моле-кулы. Это относительное смещение отрицательных и по-ложительных зарядов относительно друг друга и приво-дит к возникновению электрического дипольного момен-та молекулы. При этом в целом молекула остается нейт-ральной, так как величина отрицательного заряда элек-тронов в точности равна положительному заряду ядер. Величина дипольного момента равна произведению за-ряда одного из знаков на величину их относительного смещения. Направлен дипольный момент вдоль направ-ления смещения от отрицательного заряда к положительному. Для грушеобразной молекулы направление ди-польного момента по симметричным   соображениям должно совпадать с осью вращения, для банановидной молекулы - направлено поперек длинной оси.

Рассматривая жидкий кристалл таких молекул, легко понять, что без влияния на него внешних воздействий дипольный момент макроскопически малого, но, разуме-ется, содержащего большое число молекул объема жид-кого кристалла, равен нулю. Это связано с тем, что нап-равление директора в жидком кристалле задается ориен-тацией длинных осей молекул, количество же молекул, дипольный момент которых направлен по директору в ту и другую сторону - для грушеобразных молекул, или для банановидных молекул - поперек направления ди-ректора в ту и другую сторону, одинаково. В ре-зультате дипольный момент любого макроскопиче-ского объема жидкого кристалла равен нулю, так как он равен сумме дипольных моментов отдельных молекул.

Так, однако, дело обстоит лишь в неискаженном об-разце. Стоит путем внешнего воздействия, например ме-ханического, исказить, скажем, изогнуть его, как моле-кулы начнут выстраиваться, и распределение направле-ний дипольных моментов отдельных молекул вдоль ди-ректора для грушеподобных молекул и поперек директо-ра для банановидных будет неравновероятным. Это означает, что возникает преимущественное направление ориентации дипольных моментов отдельных молекул и, как следствие, появляется макроскопический дипольный момент в объеме жидкого кристалла. Причиной такого выстраивания являются сферические факторы, т. е. фак-торы, обеспечивающие плотнейшую упаковку молекул. Плотнейшей упаковке молекул именно и соответствует такое выстраивание молекул, при котором их дипольные моменты «смотрят» преимущественно в одну сто-рону.

С макроскопической точки зрения рассмотренный эффект проявляется в возникновении в слое жидкого кристалла электрического поля при деформации. Это связано с тем, что при выстраива-нии диполей на одной поверхности деформированного кристалла оказывается избыток зарядов одного, а на противоположной поверхности - другого знака. Таким обрезом, наличие или отсутствие флексоэлектрического эффекта несет информацию о форме молекул и ее дипольном моменте. Для молекул-палочек такой эффект отсутствует. Для только что рассмотренных форм моле-кул эффект есть. Однако, для грушеподобных и банановидных молекул для наблюдения возникновения электрического поля в слое надо вызвать в нем разли-чные деформации. Грушеподобных молекулы дают эф-фект при поперечном изгибе, а банановидные -- при продольном изгибе жидкого кристалла

Предсказанный теоретически флексоэлектрический эффект вскоре был обнаружен экспериментально. При-чем на эксперименте можно было пользоваться как пря-мым, так и обратным эффектом. Это означает, что можно не только путем деформации жидких кристаллов индуцировать в нем электрическое поле и макроскопический диполь-ный момент (прямой эффект), но и, прикладывая к об-разцу внешнее электрическое поле, вызывать дефор-мацию ориентации директора в жидком кристалле.

2. Сфера применения жидких кристаллов

2.1. Дисплеи на жидких кристаллах

Известно, какой популярностью пользовались различные электронные игры, обычно устанавлива-емые в комнате аттракционов в местах об-щественного отдыха или фойе кинотеатров. Успехи в разработке матричных жидкокристаллических дисплеев сделали возможным создание и массовое производство подобных игр в миниатюрном, так сказать, карманном ис-полнении.

Первой такой игрой в России стала игра «Ну, погоди!», ос-воена отечественной промышленностью. Габариты этой игры, как у записной книжки, а основным ее эле-ментом является жидкокристаллический матричный дис-плей, на котором высвечиваются изображения волка, зай-ца, кур и катящихся по желобам яичек. Задача играюще-го, нажимая кнопки управления, заставить волка, пере-мещаясь от желоба к желобу, ловить скатывающиеся с желобов яички в корзину, чтобы не дать им упасть на землю и разбиться. Здесь же отметим, что, помимо раз-влекательного назначения, эта игрушка выполняет роль часов и будильника, т. е. в другом режиме работы на дисплее «высвечивается» время и может подаваться зву-ковой сигнал в требуемый момент времени.

Еще один впечатляющий пример эффективности со-юза матричных дисплеев на жидких кристаллах и микро-электронной техники дают современные электронные словари и переводчики, которые начали выпускать в Японии. Они пред-ставляют собой миниатюрные вычислительные машинки размером с обычный карманный микрокалькулятор, в память которых введены слова на двух (или больше) языках и которые снабжены матричным дисплеем и кла-виатурой с алфавитом. Набирая на клавиатуре слово на одном языке, вы моментально получаете на дисплее его перевод на другой язык. Представьте себе, как улучшит-ся и облегчится процесс обучения иностранным язы-кам в школе и в вузе, если каждый учащийся будет снаб-жен подобным словарем. А наблюдая, как быстро изде-лия микроэлектроники внедряются в нашу жизнь, можно с уверенностью сказать, что такое время не за горами. Легко представить и пути дальнейшего совершенствова-ния таких словарей-переводчиков: переводится не одно слово, а целое предложение. Кроме того, перевод мо-жет быть и озвучен. Словом, внедрение таких словарей-переводчиков сулит революцию в изучении языков и технике перевода.

Появление в нашей современной жизни органайзеров, способных накапливать, обрабатывать и анализировать информацию позволяет пользователю вести индивидуальное планирование своего времени, учитывая возможность выполнения ряда действий, связанных с контактами, встречами и т.д. Органайзер заблаговременно напомнит о наступлении времени и даты особо важных мероприятий.

Миниатюризация происходит в данном случае в основном из-за уменьшения дисплея. Как видно, жидкокристаллический дисплей решает эту задачу очень просто.

При изучении дисциплины «Измерительные приборы» мы увидели многогранность использования жидкокристаллических дисплеев. Эти дисплеи используются в приборах, где необходима высокая точность измерения и низкое энергопотребление. Специалист, занимающийся ремонтом радиоаппаратуры, в настоящее время стремиться использовать вместо громоздких стрелочных приборов - миниатюрные измерительные приборы с жидкокристаллическими дисплеями.

Требования к матричному дисплею, используемому в качестве экрана телевизора, оказываются значительно выше как по быстродействию, так и по числу элементов, чем в описанных выше электронной игрушке и словаре-переводчике. Это станет понятным, если вспомнить, что в соответствии с телевизионным стандартом изображе-ние на экране формируется из 625 строк (и приблизи-тельно из такого же числа элементов состоит каждая строка), а время записи одного кадра 40 мс. Поэтому практическая реализация телевизора с жидкокристалли-ческим экраном оказывается более трудной задачей. Тем не менее, ученые и конструкторы добились налицо грандиозных успехов в техническом решении и этой задачи. Так, японская фирма «Сони» наладила про-изводство миниатюрного, умещающегося практически на ладони телевизора с цветным изображением и размером экрана 3,6 см.

2.2. Изготовление интегральных схем

Союз микроэлектроники и жидких кристаллов оказы-вается чрезвычайно эффективным не только в готовом изделии, но и на стадии изготовления интегральных схем. Как известно, одним из этапов производства микросхем является фотолитография, которая состоит в нанесении на поверхность полупроводникового материала специ-альных масок, а затем в вытравливании с помощью фотографической техники так называемых литографических окон. Эти окна в результате дальнейшего процесса про-изводства преобразуются в элементы и соединения ми-кроэлектронной схемы. От того, насколько малы разме-ры соответствующих окон, зависит число элементов схемы, которые могут быть размещены на единице площади  полупроводника, а от точности и качества вытравливания  окон зависит качество микросхемы. Выше уже говорилось о контроле качества готовых микросхем с помощью холестерических жидких кристаллов, которые визуализируют поле температур на работающей схеме и позволяют выделить участки схемы с аномальным тепловыделением.

Не менее полезным оказалось применение жидких кристаллов (теперь уже нематических) на стадии контроля качества литографических работ. Для этого на полупроводниковую пластину с протравленными литогра-фическими окнами наносится ориентированный слой нематика, а затем к ней прикладывается электрическое напряжение.  В результате в  поляризованном свете картина " вытравленных окон отчетливо визуализируется. Более  того, этот метод позволяет выявить очень малые по размерам неточности и дефекты литографических работ, протяженность которых всего 0,01 мкм.

2.3. Жидкокристаллический перстень

Некоторое время тому назад необыч-ной популярностью в США пользовалась новинка юве-лирного производства, получившая название «перстень настроения». За год было продано 50 миллионов таких перстней, т.е. практически каждая взрослая женщина имела это ювелирное изделие. Что же привлекло внима-ние любители бижутерии к этому перстню? Оказывается, он обладал совершенно мистическим свойством реагиро-вать на настроение его владельца. Реакция состояла в том, что цвет камешка перстня следовал за настроением вла-дельца, пробегая все цвета радуги от красного до фио-летового. Вот это сочетание таинственного свойства уга-дывать настроение, декоративность перстня, обеспечи-ваемая яркой и меняющейся окраской камешка, плюс низкая цена и обеспечили успех перстню настроения.

Пожалуй, именно тогда впервые широкие массы стол-кнулись с загадочным термином «жидкие кристаллы». Дело в том, что каждому владельцу перстня хотелось знать его секрет слежения за настроением. Однако ни-чего толком не было известно, говорилось, только, что камешек перстня сделан на жидком кристалле - на холестерическом жидком кристалле, а секрет перстня настроения связан с его удивительными оптическими свойствами.

Продолжением развития перстня на жидких кристаллах явилось производство медицинских приборов, использующих данный эффект. В первую очередь это относится к измерителям температуры тела человека. Градусники приобрели безопасную форму игрушки, для измерения температуры тела маленьких детей.

Во время эпидемии атипичной пневмонии, когда определяющим признаком заболевания человека является температура его тела, использовались быстродействующие жидкокристаллические термометры. Достаточно одного легкого прикосновения к жидкокристаллическому датчику в виде полоски и с высокой точностью определяется температура тела человека.

2.4. Жидкокристаллические телевизоры

Создание телевизоров с жидкокристаллическими экранами стало новой исторической вехой применения жидких кристаллов (LCD). Телевизоры этого типа становятся доступнее для покупателей, потому что происходит регулярно снижении цен, из-за совершенствования технологий производства.

Экран LCD - это экран просветного типа, то есть экран, который подсвечивается с обратной стороны лампой белого цвета, а ячейки основных цветов (RGB - красный, зеленый, синий), расположенные на трех панелях соответствующих цветов, пропускают или не пропускают через себя свет в зависимости от приложенного напряжения. Именно поэтому происходит определенное запаздывание картинки (время отклика), особенно заметное при просмотре быстродвижущихся объектов. Время отклика в современных моделях разнится от 15 мс (миллисекунды, 1мс - одна тысячная секунды) до 40 мс и зависит от типа и размера матрицы. Чем меньше это время, тем быстрее меняется изображение, нет явлений шлейфа и наложения картинок.

Страницы: 1, 2, 3