скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Здійснення авторізації доступу до каналів комп’ютерних мереж скачать рефераты

p align="left">стандарти, що визначають швидкість передачі даних і метод кодування;

стандарти виправлення помилок;

стандарти стиснення даних.

Ці стандарти визначають роботу модемів як для виділених, так і комутованих ліній. Модеми можна також класифікувати залежно від того, який режими роботи вони підтримують (асинхронний, синхронний або обидва ці режими), а також до якого закінчення (4-дротяному або 2-дротяному) вони підключені.

Відносно режиму роботи модеми діляться на три групи:

модеми, що підтримують тільки асинхронний режим роботи;

модеми підтримуючі асинхронний і синхронний режими роботи;

модеми, що підтримують тільки синхронний режим роботи.

Модеми, що працюють тільки в асинхронному режимі, звичайно підтримують низьку швидкість передачі даних - до 1200 біт/с. Так, модеми, що працюють за стандартом V.23, можуть забезпечувати швидкість 1200 біт/с на 4-дротяній виділеній лінії в дуплексному асинхронному режимі, а за стандартом V.21 - на швидкості 300 біт/с по 2-дротяній виділеній лінії також в дуплексному асинхронному режимі. Дуплексний режим на 2-дротяному закінченні забезпечується частотним розділенням каналу. Асинхронні модеми представляють найдешевший вид модемів, оскільки їм не потрібні високоточні схеми синхронізації сигналів на кварцових генераторах. Крім того, асинхронний режим роботи невибагливий до якості лінії.

Модеми, що працюють тільки в синхронному режимі, можуть підключатися тільки до 4-дротяного закінчення. Синхронні модеми використовують для виділення сигналу високоточні схеми синхронізації і тому звично значно дорожче за асинхронні модеми. Крім того, синхронний режим роботи пред'являє високі вимоги до якості лінії.

Для виділеного каналу тональної частоти з 4-дротяним закінченням розроблено достатньо багато стандартів серії V. Всі вони підтримують дуплексний режим:

V.26 - швидкість передачі 2400 біт/с;

V.27 - швидкість передачі 4800 біт/с;

V.29 - швидкість передачі 9600 біт/с;

V.32 ter - швидкість передачі 19 200 біт/с.

Для виділеного широкосмугового каналу 60-108 кГц існують три стандарти:

V.35 - швидкість передачі 48 Кбіт/с;

V.36 - швидкість передачі 48-72 Кбіт/с;

V.37-скорость передачі 96-168 Кбіт/с.

Корекція помилок в синхронному x0режимі роботи звичайно реалізується по протоколу HDLC, але допустимі і застарілі протоколи SDLC і BSC компанії IBM. Модеми стандартів V.35, V.36 і V.37 використовують для зв'язку з DTE інтерфейс V.35.

Модеми, що працюють в асинхронному і синхронному режимах, є найбільш універсальними пристроями. Найчастіше вони можуть працювати як по виділених, так і по комутованих каналах, забезпечуючи дуплексний режим роботи. На виділених каналах вони підтримують в основному 2-дротяне закінчення і набагато рідше - 4-дротяне.

Для асихронно-синхронних модемів розроблений ряд стандартів серії V:

V.22 - швидкість передачі до 1200 біт/с;

V.22 bis - швидкість передачі до 2400 біт/с;

V.26 ter - швидкість передачі до 2400 біт/с;

V.32 - швидкість передачі до 9600 біт/с;

V.32 bis - швидкість передачі 14 400 біт/с;

V.34 - швидкість передачі до 28,8 Кбіт/с;

V.34+ - швидкість передачі до 33,6 Кбіт/с.

Типова структура з'єднання двох комп'ютерів або локальних мереж через маршрутизатор за допомогою виділеної аналогової лінії приведена на рис. 1.5. У разі 2-дротяного закінчення (див. рис. 1.3, а) для забезпечення дуплексного режиму модем використовує трансформаторну розв'язку. Телефонна мережа завдяки своїй схемі розв'язки забезпечує роз'єднання потоків даних, циркулюючих у різних напрямах. За наявності 4-дротяного закінчення (див. рис. 1.5, б) схема модему спрощується.

Рис. 1.5. З'єднання локальних мереж або комп'ютерів по виділеному каналу

Цифрові виділені лінії

Цифрові виділені лінії утворюються шляхом постійної комутації в первинних мережах, побудованих на базі комутаційної апаратури, що працює на принципах розділення каналу в часі - TDM. Існують два покоління технологій цифрових первинних мереж - технологія плезіохронної («плезіо» означає «майже», тобто майже синхронної) цифрової ієрархії (Plesiochronic Digital Hierarchy, PDH) і пізніша технологія - синхронна цифрова ієрархія (Synchronous Digital Hierarchy, SDH). У Америці технології SDH відповідає стандарт SONET.

Технологія плезіохронної цифрової ієрархії PDH

Цифрова апаратура мультиплексування і комутації була розроблена в кінці 60-х років компанією AT&T для вирішення проблеми зв'язку крупних комутаторів телефонних мереж між собою. Канали з частотним ущільненням, вживані до цього на ділянках АТС-АТС, вичерпали свої можливості по організації високошвидкісного багатоканального зв'язку по одному кабелю. У технології FDM для одночасної передачі даних 12 або 60 абонентних каналів використовувалася вита пара, а для підвищення швидкості зв'язку доводилося прокладати кабелі з великою кількістю пар дротів або дорожчі коаксіальні кабелі. Крім того, метод частотного ущільнення високо чутливий до різного роду перешкодам, які завжди присутні в територіальних кабелях, та і високочастотна несуча мови сама створює перешкоди в приймальній апаратурі, будучи погано відфільтрована.

Для вирішення цієї задачі була розроблена апаратура Т1, яка дозволяла в цифровому виді мультиплексувати, передавати і комутувати (на постійній основі) дані 24 абонентів. Оскільки абоненти як і раніше користувалися звичними телефонними апаратами, тобто передача голосу йшла в аналоговій формі, то мультиплексори Т1 самі здійснювали оцифровування голосу з частотою 8000 Гц і кодували голос за допомогою імпульсно-кодової модуляції (Pulse Code Modulation, PCM). В результаті кожен абонентний канал утворював цифровий потік даних 64 Кбіт/с. Для з'єднання магістральних АТС канали Т1 були дуже слабкими засобами мультиплексування, тому в технології була реалізована ідея утворення каналів з ієрархією швидкостей. Чотири канали типа Т1 об'єднуються в канал наступного рівня цифрової ієрархії - Т2, передаючий дані із швидкістю 6,312 Мбіт/с, а сім каналів Т2 дають при об'єднанні канал ТЗ, що передає дані із швидкістю 44,736 Мбіт/с. Апаратура T1, T2 і ТЗ може взаємодіяти між собою, утворюючи ієрархічну мережу з магістральними і периферійними каналами трьох рівнів швидкостей.

Технологія цифрової ієрархії була пізніше стандартизована CCITT. При цьому в неї були внесені деякі зміни, що привело до несумісності американської і міжнародної версій цифрових мереж. Американська версія поширена сьогодні окрім США також в Канаді і Японії (з деякими відмінностями), а в Європі застосовується міжнародний стандарт. Аналогом каналів Т в міжнародному стандарті є канали типа El, E2 і E3 з іншими швидкостями - відповідно 2,048 Мбіт/с, 8,488 Мбіт/с і 34,368 Мбіт/с. Американський варіант технології також був стандартизований ANSI.

Не дивлячись на відмінності американської і міжнародних версій технології цифрової ієрархії, для позначення ієрархії швидкостей прийнято використовувати одні і ті ж позначення - DSn (Digital Signal n). У табл. 1.1 приводяться значення для всіх введених стандартами рівнів швидкостей обох технологій.

На практиці в основному використовуються канали Т1/Е1 і ТЗ/E3.

Користувач може орендувати декілька каналів 64 Кбіт/с (56 Кбіт/с) в каналі Т1/Е1. Такий канал називається «дробовим» (fractional) каналом Т1/Е1. В цьому випадку користувачу відводиться декілька тайм - слотів роботи мультиплексора.

Фізичний рівень технології PDH підтримує різні види кабелів: виту пару, коаксіальний кабель і волоконно-оптичний кабель. Основним варіантом абонентного доступу до каналів Т1/Е1 є кабель з двох витих пар з роз'ємами RJ-48. Дві пари потрібні для організації дуплексного режиму передачі даних із швидкістю 1,544/2,048 Мбіт/с.

Таблиця 1.1

Ієрархія цифрових швидкостей

Позначення швидкості

Америка

Європа

Позначення швидкості

Кількість голосових каналів

Кількість каналів попереднього рівня

Швидкість передачі, Мбіт/с

Позначення швидкості

Кількість голосових каналів

Кількість каналів попереднього рівня

Швидкість передачі, Мбіт/с

DS-0

1

1

64 кбіт/с

1

1

64 кбіт/с

DS-1

T1

24

24

1,544

E1

30

30

2,048

DS-2

T2

96

4

6,312

E2

120

4

8,488

DS-3

T3

672

7

44,736

E3

480

4

34,368

DS-4

4032

6

274,176

1920

4

139,264

Коаксіальний кабель завдяки своїй широкій смузі пропускання підтримує канал Т2/Е2 або 4 канали Т1/Е1. Для роботи каналів ТЗ/E3 звичайно використовується або коаксіальний кабель, або волоконно-оптичний кабель, або канали НВЧ.

Фізичний рівень міжнародного варіанту технології визначається стандартом G.703, назвою якого позначається тип інтерфейсу маршрутизатора або моста, що підключається до каналу Е1. Американський варіант інтерфейсу носить назву Т1.

Як американський, так і міжнародний варіанти технології PDH володіють декількома недоліками.

Одним з основних недоліків є складність операцій мультиплексування і демультиплексування призначених для користувача даних. Сам термін «плезіохронний», використовуваний для цієї технології, говорить про причину такого явища - відсутності повної синхронності потоків даних при об'єднанні низькошвидкісних каналів в більш високошвидкісні. Спочатку асинхронний підхід до передачі кадрів породив вставку біта або декількох біт синхронізації між кадрами. В результаті для витягання призначених для користувача даних з об'єднаного каналу необхідно повністю демультиплексувати кадри цього об'єднаного каналу. Наприклад, якщо вимагається одержати дані одного абонентного каналу 64 Кбіт/с з кадрів каналу ТЗ, необхідно виробити демультиплексування цих кадрів до рівня кадрів Т2, потім - до рівня кадрів Т1, а потім демультиплексувати і самі кадри Т1. Для подолання цього недоліку в мережах PDH реалізують деякі додаткові прийоми, що зменшують кількість операцій демультиплексування при витягання призначених для користувача даних з високошвидкісних каналів. Наприклад, одним з таких прийомів є «зворотна доставка» (back hauling). Хай комутатор 1 каналу ТЗ приймає потік даних, що складається з 672 призначених для користувача каналів, при цьому він повинен передати дані одного з цих каналів користувачу, підключеному до низькошвидкісного виходу комутатора, а всю решту потоку даних направити транзитом через інші комутатори в деякий кінцевий демультиплексор 2, де потік ТЗ повністю демультиплексувати на канали 64 Кбіт/с. Для економії комутатор 1 не виконує операцію демультиплексування свого потоку, а одержує дані свого користувача тільки при їх «зворотному проході», коли кінцевий демультиплексор виконає операцію розбору кадрів і поверне дані одного з каналів комутатору 1. Природно, такі складні взаємостосунки комутаторів ускладнюють роботу мережі, вимагають її тонкої конфігурації, що веде до великого об'єму ручної роботи і помилок.

Іншим істотним недоліком технології PDH є відсутність розвинених вбудованих процедур контролю і управління мережею. Службові біти дають мало інформації про стан каналу, не дозволяють його конфігурувати і т.п. Немає в технології і процедур підтримки відмовостійкості, які дуже корисні для первинних мереж, на основі яких будуються відповідальні міжміські і міжнародні мережі. У сучасних мережах управлінню надається велика увага, причому вважається, що управляючі процедури бажано вбудовувати в основний протокол передачі даних мережі.

Третій недолік полягає в дуже низьких за сучасними поняттями швидкостях ієрархії PDH. Волоконно-оптичні кабелі дозволяють передавати дані з швидкостями в декілька гигабіт в секунду по одному волокну, що забезпечує консолідацію в одному кабелі десятків тисяч призначених для користувача каналів, але цю властивість технологія PDH не реалізує - її ієрархія швидкостей закінчується рівнем 139 Мбіт/с.

Всі ці недоліки усунені в новій технології первинних цифрових мереж, що одержала назву синхронної цифрової ієрархії - Synchronous DigitalHierarchy, SDH.

1.4 Висновок

Таким чином, виходячи з проведеного аналізу організації каналів передачі даних в комп'ютерних мережах можна зробити ряд висновків:

у межах тієї або іншої архітектури КМ повинна забезпечуватись погоджена взаємодія різних її структур. Так, при деякій логічній структурі, яка відповідає прийнятій архітектурі КМ, може бути побудована множина фізичних структур у вигляді різнорідних каналів передачі даних, що впливають на властивості та можливості мережі. Вони являють собою узагальнений алгоритм інформаційного процесу, що протікає в КМ;

при передачі дискретних даних по каналах передачі даних застосовуються два основні типи фізичного кодування - на основі синусоїдального несучого сигналу і на основі послідовності прямокутних імпульсів. Перший спосіб часто називається також модуляцією або аналоговою модуляцією, підкреслюючи той факт, що кодування здійснюється за рахунок зміни параметрів аналогового сигналу. Другий спосіб звичайно називають цифровим кодуванням. Ці способи відрізняються шириною спектру результуючого сигналу і складністю апаратури, необхідної для їх реалізації;

каналів передачі даних у КМ діляться на аналогові і цифрові залежно від того, якого типу комутаційна апаратура застосована для постійної комутації абонентів - з частотним розділенням каналів (Frequency Division Multiplexing - FDM) або тимчасовим розділенням каналів (Time Division Multiplexing - TDM).

Тому для детального вивчення особливостей доступу до каналів передачі даних розглянемо сутність існуючих методі доступу.

РОЗДІЛ 2

Фізична сутність та порядок організації каналів комп'ютерних мереж

Канали передачі даних є фундаментом будь-якої мережі. Якщо в каналах щодня відбуваються короткі замикання, контакти роз'ємів то відходять, то знову входять у щільне з'єднання, додавання нової станції призводить до необхідності тестування десятків контактів роз'ємів через те, що документація на фізичні з'єднання не ведеться. Очевидно, що на основі таких каналів передачі даних будь-яке найсучасніше і продуктивне устаткування буде працювати погано. Користувачі будуть незадоволені великими періодами простоїв і низькою продуктивністю мережі, а обслуговуючий персонал буде в постійній "запарці", розшукуючи місця коротких замикань, обривів і поганих контактів. Причому проблем з каналами передачі даних стає набагато більше при збільшенні розмірів мережі.

2.1 Структурована кабельна система комп'ютерної мережі

Відповіддю на високі вимоги до якості каналів зв'язку в комп'ютерних мережах стали структуровані кабельні системи.

Структурована кабельна система (СКС) (Structured Cabling System, SCS) - це набір комутаційних елементів (кабелів, роз'ємів, конекторів, кросових панелей і шаф), а також методика їх спільного використання, яка дозволяє створювати регулярні, легко розширювані структури зв'язків в комп'ютерних мережах.

Структурована кабельна система представляє свого роду "конструктор", за допомогою якого проектувальник мережі будує потрібну йому конфігурацію зі стандартних кабелів, з'єднаних стандартними роз'ємами, які комутуються на стандартних кросових панелях. При необхідності конфігурацію зв'язків можна легко змінити - додати комп'ютер, сегмент, комутатор, вилучити непотрібне устаткування, а також замінити з'єднання між комп'ютерами і концентраторами.

При побудові структурованої кабельної системи мається на увазі, що кожне робоче місце на підприємстві повинне бути оснащене розетками для підключення телефону і комп'ютера, навіть якщо на даний момент цього не потрібно. Тобто добре структурована кабельна система будується надлишковою. У майбутньому це може заощадити час тому, що зміни в підключенні нових пристроїв можна здійснювати за рахунок перекомутації вже прокладених кабелів.

Структурована кабельна система планується і будується ієрархічно з головною магістраллю і численними відгалуженнями від неї (рис. 2.1).

Ця система може бути побудована на базі вже існуючих сучасних телефонних кабельних систем, у яких кабелі, що представляють собою набір кручених пар, прокладаються в кожному будинку, розводяться між поверхами. На кожному поверсі використовується спеціальна кросова шафа, від якої кабелі в трубах і коробах підводяться до кожної кімнати і розводяться по розетках. На жаль, далеко не у всіх будинках телефонні лінії прокладаються крученими парами, тому вони непридатні для створення комп'ютерних мереж, і кабельну систему в такому випадку потрібно будувати заново.

Типова ієрархічна структура структурованої кабельної системи (рис. 2.2) включає:

горизонтальні підсистеми (у межах поверху);

вертикальні підсистеми (усередині будинку);

підсистему кампусу (у межах однієї території з декількома будинками).

Горизонтальна підсистема з'єднує кросову шафу поверху з розетками користувачів. Підсистеми цього типу відповідають поверхам будинку.

Вертикальна підсистема з'єднує кросові шафи кожного поверху з центральною апаратною будинку.

Наступним кроком ієрархії є підсистема кампусу, що з'єднує кілька будинків з головною апаратною усього кампусу. Ця частина кабельної системи звичайно називається магістраллю (backbone).

Рис. 2.1. Ієрархія структурованої кабельної системи

Використання структурованої кабельної системи замість хаотично прокладених кабелів дає підприємству багато переваг.

Універсальність. Структурована кабельна система при продуманій організації може стати єдиним середовищем для передачі комп'ютерних даних у локальній обчислювальній мережі, організації локальної телефонної мережі, передачі відеоінформації і навіть передачі сигналів від датчиків пожежної безпеки або охоронних систем. Це дозволяє автоматизувати більшість процесів контролю, моніторингу та управління господарськими службами і системами життєзабезпечення підприємства.

Збільшення терміну служби. Термін морального старіння добре структурованої кабельної системи може складати 10 - 15 років.

Зменшення вартості добавлення нових користувачів і зміни місць їх розташування.

Відомо, що вартість кабельної системи значна і визначається в основному не вартістю кабелю, а вартістю робіт з його прокладки. Тому більш вигідно провести однократну роботу по прокладці кабелю, можливо, з великим запасом по довжині, ніж кілька разів виконувати прокладку, нарощуючи довжину кабелю. При такому підході всі роботи з добавлення або переміщення користувача зводяться до підключення комп'ютера до вже наявної розетки.

Можливість легкого розширення мережі. Структурована кабельна система є модульною, тому її легко розширювати. Наприклад, до магістралі можна додати нову підмережу, не роблячи ніякого впливу на існуючі підмережі. Можна замінити в окремій підмережі тип кабелю незалежно від іншої частини мережі. Структурована кабельна система є основою для розподілу мережі на легко управляємі логічні сегменти тому, що вона сама вже розділена на фізичні сегменти.

Забезпечення більш ефективного обслуговування. Структурована кабельна система полегшує обслуговування і пошук несправностей у порівнянні із шинною кабельною системою. При шинній організації кабельної системи відмова одного з пристроїв або сполучних елементів призводить до відмови всієї мережі, яку важко локалізувати. У структурованих кабельних системах відмова одного сегмента не діє на інші тому, що об'єднання сегментів здійснюється за допомогою концентраторів. Концентратори діагностують і локалізують несправний сегмент.

Страницы: 1, 2, 3