скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Защита от средств слежения за автомобилями скачать рефераты

исунок 1.3 - Метод инверсного приближения

Однако на практике чаще используется инверсный метод приближения (рис. 1.3): обнаружение и идентификация транспортных средств осуществляется с помощью установленных на них активных, пассивных или полуактивных мало-мощных радиомаяков, передающих на приемник контрольного пункта свой ин-дивидуальный код, или же с помощью оптической аппаратуры считывания и рас-познавания характерных признаков объекта, например, автомобильных номеров. Информация от контрольных пунктов передается далее в подсистему управления и обработки данных.

Очевидно, что для зоновых систем точность местоопределения и периодичность обновления данных напрямую зависит от плотности расположения контрольных пунктов на территории действия системы. Методы приближения требуют разви-той инфраструктуры связи для организации подсистемы передачи данных с боль-шого числа таких пунктов в центр управления и контроля, а в случае использова-ния оптических методов считывания -- требуют и сложной аппаратуры, используемой на всех контрольных пунктах, и поэтому весьма дороги при постро-ении систем, охватывающих большие территории. В то же время, инверсные ме-тоды приближения позволяют минимизировать объем бортовой аппаратуры -- радиомаяка, либо вовсе обойтись без устанавливаемой на автомашину аппаратуры. Основное применение данных систем -- комплексное обеспечение охраны авто-машин, обеспечение поиска автомашин при угоне. Примером подобной системы является система КОРЗ, обеспечивающая фиксацию приближения угнанной обо-рудованной автомашины к посту--пикету ГИБДД. Во многих зарубежных странах зоновые системы функционируют уже длительное время, как для нужд диспетче-ризации общественного транспорта, движущегося по постоянным маршрутам, так и для нужд правоохранительных органов.[1]

1.3 Методы местоопределения по радиочастоте

Местоположение транспортного средства определяется путем измерения разно-сти расстояний транспортного средства от трех или более относительных позиций.

Данную группу методов можно условно разбить на две подгруппы:

Ш радиопеленгация (обобщенно), когда абсолютное или относительное местоположение подвижного объекта определяется при приеме излучаемого им радиосигнала сетью стационарных или мобильных приемных пунктов;

Ш вычисление координат по результатам приема специальных радиосигна-лов на борту подвижного объекта (методы прямой или инверсной радио-навигации).[1]

1.3.1 Методы радиопеленгации

С помощью распределенной по территории города сети пеленгаторов или с помощью мобильных средств пеленгации возможно отслеживание местоположе-ния объектов, оборудованных радиопередатчиками-маяками.

На практике метод пеленгации, как наиболее дешевый в начальные годы ста-новления систем спутниковой навигации (когда стоимость спутниковых прием-ников измерялась тысячами долларов), был опробован полицейскими и пожар-ными службами США и Канады. Результаты опытной эксплуатации системы показали, что ома может очень хорошо использоваться на открытой местности. Однако данная система имеет большие погрешности в условиях плотной городс-кой застройки. Кроме того, стоимость инфраструктуры, необходимой для охвата значительной площади, весьма велика. В настоящее время этот метод использует-ся очень редко.

Примером
AVL-системы, основанной на методах радиопеленгации, можно счи-тать систему ГИПС (новое название -- СКИФ). Принцип работы системы заключает-ся в следующем. Прием сигнала, излучаемого малогабаритным радиомаяком на под-вижном объекте, осуществляется сетью стационарных радиоприемных центров, и по полученным данным производится с помощью математических операций определе-ние местоположения автомашины с наибольшей вероятностью. Применение широкополосных сигналов с базой 103 -108 обеспечивает частоту обновления информации один раз в секунду в системе из 5000 объектов при высокой помехозащищенности. Точность местоопределения зависит от плотности размещения стационарной радио-приемной сети на территории города и может составлять единицы метров в режиме непрерывного слежения и корректировки данных по электронной карте.

Подобную систему с применением пейджеров двухсторонней связи и сети при-емопередающих станций предлагает фирма «МегаПейдж». Широкополосный пе-редатчик, установленный на автомашине, включается по сигналу стандартного пейджингового приемника либо по сигналу системы противоугонной сигнализа-ции. Определение местоположения передатчика осуществляется с помощью сети базовых станций пейджинговой системы.

Примером системы на базе мобильных пеленгаторов является хорошо извест-ная по телевизионным шоу-программам канала НТВ -- система LoJack. Пеленга-торами данной системы оборудованы автомашины специального батальона дорожно-постовой службы ГИБДД и посты-пикеты ГИБДД на выезде из Москвы и ряда других городов.[1]

1.3.2 Методы радионавигации

Космическая радионавигация воплотила в себе новейшие достижения компь-ютерных и телекоммуникационных технологий. Симбиоз спутниковой системы позиционирования, современной радиосвязи и электронной картографии позво-ляет определять местоположение и скорость транспортного средства, вычислять расстояния, прокладывать маршруты и отслеживать их соблюдение, получать справки о картографических объектах. Сегодня работают две системы: американ-ская Navstar и отечественная ГЛОНАСС. Использование обеих систем позволяет более точно определять координаты и повышает надежность функционирования.

Методы на основе радионавигации реализуются в системах AVL на основе им-пульсно-фазовых наземных навигационных систем (типа LORAN-C, Чайка) и спут-никовых среднеорбитальных навигационных систем (СРНС) Navstar и ГЛОНАСС. Наилучшие точностные и эксплуатационные характеристики в настоящее время имеют спутниковые навигационные системы, в которых достигается точность местоопределения в стандартном режиме не менее 50--100 м, а с применением специальных методов обработки информационных сигналов в режиме фазовых определений или дифференциальной навигации -- до единиц метров.

Самой известной является глобальная спутниковая радионавигационная система Navstar (Navigation System using Timing And Ranging) или GPS (Global Positioning System), созданная для высокоточного навигационно-временного обеспечения объектов, движущихся в космосе, воздухе, на земле и воде.

В ее состав входят навигационные спутники, наземный комплекс управления и аппаратура потребителей (пользователей). Применяемый в системе принцип состоит в том, что специальные приемники, установленные у потребителей, из-меряют дальность до нескольких спутников и определяют свои координаты по точкам пересечения поверхностей равного удаления.

Дальность вычисляется по формулам, известным из школьных учебников, пу-тем умножения скорости распространения радиосигнала на время задержки, при прохождении им расстояния от спутника до пользователя. Величина временной задержки определяется сопоставлением кодов сигналов, излучаемых спутником и генерируемых приемным устройством, методом временного сдвига до их совпаде-ния. Временной сдвиг измеряется по часам приемника. Координаты спутников известны с высокой точностью. Для нахождения широты, долготы, высоты, ис-ключения ошибок часов приемника достаточно решить систему из четырех урав-нений. Поэтому приемник пользователя должен принимать навигационные сиг-налы от четырех спутников.

Скорость определяется по доплеровскому сдвигу несущей частоты сигнала спут-ника, вызываемому движением пользователя. Доплеровский сдвиг (Doppler shift) замеряется при сопоставлении частот сигналов, принимаемых от спутника и ге-нерируемых приемником. Разумеется, все это происходит мгновенно и без какого либо участия пользователя.

Навигационные сигналы излучаются на двух частотах L-диапазона (полоса радиочастот 390-1580 МГц):

частота L1 - 1575,42 МГц;

частота L2 -- 1227,6 МГц.

На частоте L2 излучаются сигналы с военным кодом Р(Y) с высокоточной ин-формацией (precision -- точный, или protected -- защищенный), защищенным от имитационных помех.

Р-код представляет из себя последовательность псевдослучайных бистабильных манипуляций фазы несущей частоты (Carrier Frequency) с частотой следова-ния, равной 10,23 МГц и периодом повторения в 267 суток. Каждый недельный сегмент этого кода является уникальным для одного из спутников GPS и непре-рывно генерируется им в течение каждой недели, начиная с ночи с субботы на воскресенье.

На частоте L1 излучаются сигналы и с военным кодом P(Y), и с общедоступным гражданским кодом (Civilian Code), который часто называют C/A (Clear Acquisition - код свободного доступа). Прием сигнала по коду P(Y) обеспечивает работу в режиме PPS (Precise Positioning Service - высокая точность измерений). Сравнение времени прихода сигналов на частотах L1 и L2 позволяет вычислять дополнительную задержку, возникающую при прохождении радиоволн через ионосферу, что значительно повышает точность измерений навигационных данных.

Прием на частоте L1 с кодом C/A не позволяет определить ошибки, вносимые ионосферой. Структура кода C/A обеспечивает худшие характеристики в режиме SPS (Standart Positioning Service - стандартная точность измерений). Так, если в режиме PPS с вероятностью 0,95 ошибки измерения широты и долготы не превышают 22-23 метра, высоты 27-28 метров и времени 0,09 мкс, то в режиме SPS они увеличиваются соответственно до 100, 140 метров и 0,34 мкс. Среднеквадратическая ошибка определения долготы и широты в режиме PPS составляет не более 8 метров, а в SPS - не более 40 метров. Министерство обороны США, исходя из интересов национальной безопасности, осуществляет «искусственное» ухудшение точности в режиме S/A (Selective Availability - ограниченный доступ). Первоначально режим SPS был необходим для грубого определения пользователем своих координат при вхождении в код P(Y). В настоящее время уровень электроники, программного обеспечения и методов обработки навигационной информации позволяет осуществлять достаточно быстрый захват P(Y) без кода C/A, а также проводить высокоточные определения сигнала по фазе несущей. Кроме того, полностью отработанный наземный автоматический режим дифференциальной коррекции (Differential Positioning), позволяет в ограниченном регионе получать точное определение относительных координат взаимного расположения двух приемников, отслеживать сигналы одних и тех же спутников GPS. К примеру, штатные системы навигации транспорта, при использовании гражданского C/A кода определяют координаты автомобиля с точностью от 2 до 5 метров.

Отечественная навигационная система ГЛОНАСС (советская навигационная система Ураган) аналогична по своему построению американской, но имеет более высокую точность определения координат потребителя.

Впервые в России высококлассные GPS - системы, интегрированные с современными связными и картографическими комплексами, были поставлены компанией «Прин» в 1995 году в Инкомбанк, в специальные подразделения Министерства по чрезвычайным ситуациям, некоторые коммерческие структуры. Они были предназначены для оперативного контроля и управления транспортом в пределах города и региона. Кроме того, реализуются проекты для контроля за транспортом на любых расстояниях с использованием GPS и глобальной системы мобильной связи Inmarsat.

Достоинствами данного метода являются глобальность местоопределения, что позволяет применять его практически на любых территориях и трассах любой протяженности, хорошая точность, возможность определить положение объекта не карте местности, способность определять не только координаты, но и высоту, скорость и направление движения объекта, высокая степень совместимости с автоматизированными системами обработки информации. Не случайно у подобных систем самая широкая область применения. Это системы диспетчеризации городского и специального транспорта, обеспечения безопасности транспорта и материальных ценностей, работающие в реальном масштабе времени на территории города с десятками и сотнями подвижных объектов. Это системы контроля маршрутов транспорта, осуществляющего дальние междугородние и международные перевозки (с передачей информации о маршруте с помощью глобальных систем связи типа Inmarsat или с пассивным накоплении информации о маршруте с последующей обработкой).[1]

1.4 Методы навигационного счисления

Данные методы определения местоположения транспортных средств основаны на измерении параметров движения автомашины с помощью датчиков ускорений, угловых скоростей в совокупности с датчиками пройденного пути и датчиками направления и вычислении на основе этих данных текущего местоположения под-вижного объекта относительно известной начальной точки. В целом данные методы могут использоваться в тех же системах, что и методы, основанные на ра-дионавигации. Основное их преимущество по сравнению с методами радионави-гации -- независимость от условий приема навигационных сигналов бортовой ап-паратурой. Не секрет, что на территории современного города с плотной застройкой высокими зданиями могут встречаться участки, где затруднен при-ем сигналов от наземных и даже спутниковых навигационных систем. На таких участках бортовая навигационная аппаратура не в состоянии вычислить коорди-наты подвижного объекта. Приемные антенны радионавигационных систем дол-жны размещаться на автомашинах с учетом обеспечения наилучших условий при-ема навигационных сигналов. Это делает их уязвимыми для злоумышленников в случае применения для нужд охраны автомашин или перевозимых ими грузов. Существующие методы камуфлирования (маскировки) приемных антенн доста-точно сложны и дороги.

Методы счисления пути и инерциальной навигации свободны от этих недо-статков, поскольку аппаратура полностью автономна и может быть интегрирова-на в конструктивные элементы автомашины с целью затруднения их обнаруже-ния и защиты от умышленного вывода из строя. Недостатками методов навигационного счисления можно считать:

Ш необходимость коррекции параметров движения из-за накапливаемых ошибок измерения;

Ш достаточно большие, в целом, габариты бортовой аппаратуры;

Ш отсутствие доступной малогабаритной элементной базы для создания бор-товой аппаратуры (акселерометров, автономных вычислителей пройден-ного пути, датчиков направления);

Ш сложность обработки параметров движения.

Наиболее перспективным направлением применения подобных методов мож-но считать их совместное использование с радионавигационными методами, что позволит скомпенсировать недостатки, присущие как одному, так и другому ме-тоду. Систему местоопределения с использованием данного метода предлагает ЗАО «Автонавигатор». В бортовом оборудовании системы используются:

Ш датчик пути, подключаемый к спидометру автомашины;

Ш датчик направления на основе феррозондов, измеряющих отклонение оси;

Ш автомашины от магнитного меридиана Земли;

Ш датчик ускорения (акселерометр), обеспечивающий устранение ошибок феррозондового датчика, возникающих из-за негоризонтального располо-жения объекта относительно поверхности Земли.

Корректировка ошибок счисления производится по цифровой векторной кар-те полилиний транспортной сети города, что позволяет достичь точности местоопределения до единиц метров. Имеется возможность использования элементов бортового оборудования совместно с приемником GPS.[1]

2 Навигационные системы поиска и слежения

Из-за сложного экономического положения охраны и недостаточного финансирования служб навигационного обеспечения отечественные космические системы определения координат различных потребителей отошли на второй план. Этим воспользовались зарубежные фирмы, между которыми развернулась жест-кая борьба за овладение российским рынком.

В последнее время навигационные системы безопасности и поиска, в которых используются сотовая связь и технология GPS, становятся отдельным направле-нием в автомобильной электронике. Они не только демонстрируют «чудеса тех-ники», но и позволяют снизить расходы на страхование и обеспечивают быстрый поиск угнанного автомобиля.

В настоящее время системы поиска автомобилей продолжают развиваться. В них используются новейшие достижения в области навигации и информацион-ных технологий, возможности и достижения военно-промьшленного комплекса.

Структурно схемы автоматического контроля можно разделить на следующие функциональные подсистемы:

Ш определение координат объекта на местности;

Ш передача данных;

Ш обработка и отображение результатов.

Для определения координат объектов в различных системах используются следующие методы:

Ш автоматическая пеленгация кодированных радиомаяков, установленных на автомобилях;

Ш установка на автомобилях навигационных приемников систем GPS или ГЛОНАСС;

Ш прием специальной аппаратурой, установленной на автомобилях, маломощных сигналов маркеров, обозначающих контрольные точки маршрута.

Страницы: 1, 2, 3, 4