скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Характеристики средств измерений скачать рефераты

Характеристики средств измерений

1. Метрологические характеристики

Расчёт класса точности

Класс точности является обобщённой метрологической характеристикой средств измерений (СИ) и определяется пределами допускаемых погрешностей, а также другими свойствами СИ, влияющими на точность измерений. Класс точности указывается в сопроводительной документации на СИ или на шкале отсчётного устройства в виде обозначения, соответствующего форме выражения пределов допускаемой основной погрешности по ГОСТ 8.401-80.

Исходные данные:

- верхний предел измерений.

Предпочтительное значение измеряемой величины x должно соответствовать примерно 0.75 от верхнего предела измерений:

Предел допустимых основных погрешностей пьезоэлектрических преобразователей возьмем из таблицы (ГОСТ 3044-74)

Где слагаемое является аддитивной составляющей, а слагаемое - мультипликативной.

b=

Расчёт численного значения класса точности сводится к определению постоянных c и d с учётом, что 2<c/d<20, с и d найдем по формулам:

;

,

где c и d - положительные числа.

Значение с для приборов переменного тока должно находиться в пределах 0.01<c<0.1.

Полученное значение с=0.04 входит в заданные пределы.

Класс точности:

Пределы допускаемой относительной основной погрешности устанавливают по формуле:

Абсолютная погрешность

Определение выходного кода и его параметров

Выходной код и его параметры выбираются по ГОСТ 26.014-81 «ЕССП. Средства измерений и автоматизации. Сигналы электрические кодированные входные и выходные».

На вход аналого-цифрового преобразователя (АЦП) с выхода аналогового канала поступает сигнал S с некоторой погрешностью; АЦП за счёт квантования аналогового сигнала вносит дополнительную погрешность. В результате величина Z на выходе АЦП будет иметь некоторую погрешность. При аддитивном характере составляющих погрешности и результирующая погрешность будет определяться как:

Суммарное среднее квадратическое отклонение (с.к.о.) погрешности преобразования:

, (1)

где: - с.к.о. погрешности аналогового сигнала;

- с.к.о. погрешности АЦП за счёт квантования;

?S - шаг квантования, которому соответствует погрешность

Здесь, т.к.для входного сигнала принят закон равномерного распределения.

Влияние составляющей, распределённой равномерно, приводит в их композиции к уменьшению доверительных интервалов при заданной доверительной вероятности по сравнению с нормальным законом. Если отношение 0.5?S/дs=0.1…1.0, то доверительный интервал ±1.7дz имеет доверительную вероятность P=0.98. При отношении 0.5?S/дs<0.1 при Р=0.99 доверительный интервал будет равен ±2дz.

При отсутствии систематических погрешностей и принятии допущения о том, что случайная погрешность распределена нормально, можно установить зависимость между приведённой допускаемой погрешностью г и с.к.о. этой погрешности.

При этих условиях 95% значений случайной погрешности находится в пределах от -2дs до +2дs.

Примем

,

откуда

Если с.к.о. погрешности от квантования принять равным дs,то

суммарное с.к.о. в результате квантования согласно (1) увеличивается на 41% по сравнению c дs.

Если принять ?S=дs, суммарное с.к.о. увеличивается только на 4%,т.е. в этом случае квантование почти не изменит с.к.о. суммарной погрешности. Этому соотношению примерно соответствует минимально допустимое отношение с/d=2, установленное ГОСТ 14014-82 и соответствующее равенству аддитивной и мультипликативной составляющих погрешностей.

Шаг квантования (цена единицы младшего разряда кода)

где;

;

Номинальное число ступеней квантования (разрешающая способность)

Число разрядов кода

Вид кода: двоичный нормальный

Функция преобразования (статическая функция преобразования) - функциональная зависимость между информативными параметрами выходного и входного сигналов.

При определении функции преобразования учитываем, что аналоговый канал представляет собой линейную цепь прямого преобразования последовательного типа.

Номинальная функция преобразования:

где , К1,К2, КЗ,К4 - коэффициенты преобразования отдельных звеньев цепи

Таким образом, номинальная функция преобразования имеет вид:

U=k*k*k (T),

где U- напряжение;

k1 - коэффициент преобразования термопары;

k2 - коэффициент преобразования усилителя;

k3 - коэффициент преобразования фильтра;

Т - температура.

Чувствительность СИ - приращение информативного параметра выходного сигнала ?y СИ к вызвавшему его приращению информативного параметра входного сигнала ?x:

При линейной статической характеристике преобразования чувствительность постоянна и равна:

где

где мВ- термоЭДС термоэлектрических термометров типа ТХА стандартной градуировки ХА при температуре свободных концов 0єС ГОСТ 3044-74

Фильтруемый усиленный сигнал не изменяется по частоте.

Порог чувствительности - наименьшее изменение входной величины, обнаруживаемое с помощью данного СИ. Значение порога чувствительности аналогового канала, предвключённого к цифровому СИ не должно быть меньше цены деления младшего разряда выходного кода, поэтому принимаем его равным 0.01 кг.

2 Динамические характеристики

Динамические характеристики - характеристики инерционных свойств СИ, определяющие зависимость выходного сигнала от меняющихся во времени величин: параметров входного сигнала, внешних влияющих величин, нагрузки.

Общая передаточная функция имеет вид:

К (р)общ= k(р)*k(р)*k(р).

где;

k1(р)- передаточная функция термопары;

k2(р)- передаточная функция усилителя;

k3(р)- передаточная функция фильтра

р - оператор Лапласа.

Коэффициент демпфирования в для исключения возможности резонансных явлений не должен превышать 0.8

Переходная характеристика для аналогового канала, по своим динамическим свойствамимеет вид:

(2)

где ф -постоянная времени датчика;

щ0 - собственная частота звена;

Значение выходного сигнала h(t) выбираем из условия, что оно должно отличаться от установившегося значения не больше, чем на установленное ТЗ значение ддоп=0.04.

Время установления показаний определяем по временной характеристике h(t), решая уравнение (2) относительно t:

Исходные данные

h(t)=0.04 - временная переходная характеристика;

ф=

Кобщ=0.00625

Подставляя числовые данные в уравнение (2), решаем его относительно

времени установления показаний

3. Эксплуатационные характеристики

Эксплуатационные характеристики: климатические и механические воздействия, устанавливаются для нормальных или рабочих условий применения и предельных условий транспортирования (ГОСТ 14014-82).

Нормальные условия применения характеризуются совокупностью значений или областей значений влияющих величин, принимаемых за нормальные. Устанавливаются по ГОСТ 22261 - 82 и ГОСТ 8.395 - 80.

Рабочие условия применения - совокупность значений влияющей величины, которые не выходят за пределы рабочей области значений, нормирующих дополнительную погрешность или изменение показаний СИ. Устанавливаются по ГОСТ 22261 - 82.

4. Показатели надёжности

Показателями надёжности для разрабатываемого цифрового устройства являются безотказность, долговечность, ремонтопригодность.

В качестве характеристики безотказности установлена наработку на отказ, равная 1500 часов.

В качестве характеристики долговечности принят средний срок службы до списания, который должен быть не менее 8 лет.

Ремонтопригодность характеризуется средним временем восстановления, которое выбираем не менее 2 часов.

5. Требования безопасности

Требования по электробезопасности по ГОСТ 12.2.097-83.

Требования к основным элементам конструкции, органам управления, средствам защиты, безопасности ремонта, монтажа, хранения по ГОСТ 12.2.003-74, ГОСТ 14014-82, ГОСТ 22251-76.

6. Показатели помехозащищённости

Показатели помехозащищённости, средства и методы поверки: установлены по ГОСТ 1014-82.

1 Основная схема типичной контрольно-измерительной системы

В терминах электроники измерительный преобразователь определяется обычно как прибор, преобразующий неэлектрическую физическую величину (называемую измеряемой физической величиной) в электрический сигнал, или наоборот. Имеются, конечно, и исключения из этого правила.

Отсюда следует, что измерительные преобразователи используются в электронных системах, т. е. в технических устройствах с электрическим сигналом, отображающим результат измерений или наблюдений. С другой стороны, измерительный преобразователь может быть использован на выходе системы, чтобы, скажем, генерировать механическое движение в зависимости от электрического управляющего сигнала. Примером реализации преобразователей является справочная система, в которой микрофон (входной преобразователь) превращает звук (измеряемую физическую величину) в электрический сигнал. Последний усиливается, а затем поступает на громкоговоритель (выходной преобразователь), вос­производящий звук существенно более громкий, нежели тот, который воспринимается микрофоном.

Довольно часто измеряемая величина согласно ее определению просто измеряется электронной системой, а полученный результат только отображается или запоминается. Однако в некоторых случаях измерения образуют входной сигнал управляющей схемы, которая служит либо для регулирования измеряемой величины относительно некоторого заранее установленного уровня, либо для управления переменной величиной в соответствии с измеряемой. Несмотря на очевидное частичное дублирование измерительных преобразователей в этих двух примерах, принято различать эти области использования преобразователей, называя их соответственно контрольно-измерительное оборудование и управляющее.

На рис. 1.1, а представлены основные составляющие типичной контрольно-измерительной системы. Безусловно, не все они должны иметь место в каждом конкретном случае применения этих систем. На рис. 1.1.б изображена в упрощенном виде типовая система управления. В сущности, часть системы управления является контрольно-измерительной системой. Таким образом, в интересах настоящего доклада измерительные преобразователи и схемы сопряжения их с другим оборудованием систем (интерфейсы) следует рассматривать с общих позиций, хотя в дальнейшем будут сделаны ссылки на конкретные области их использования.

Рассматривая рис. 1.1, следует остановиться на следующих главных моментах.

Измеряемая величина -- это подлежащая измерению физическая величина, например: ускорение, перемещение, сила, расход, уровень, положение, давление, механическое напряжение, температура, скорость и т. п. В некоторых случаях измеряемой может быть и электрическая, величина, такая, как ток, напряжение или частота, которая преобразуется в электрический сигнал, пригодный для использования в других частях системы. При, этом измерительный преобразователь является электрическим преобразующим элементом.

Входной преобразователь, преобразующий измеряемую величину в электрический сигнал, -- это прибор, пригодный для использования в других частях системы. Правда, хотя входные преобразователи генерируют электрический выход, существуют, однако, среди них и такие, которые имеют другую природу выходного сигнала, например давление воздуха, но таких преобразователей немного и они здесь не рассматриваются. Преобразователи с неэлектрическим выходом применяются в качестве чувствительных элементов измерительных преобразователей или служат для превращения неэлектрического сигнала в электрический. Все функции преобразователей являются аналоговыми, поэтому в общем случае (за некоторыми исключениями) их сигналы также аналоговые.

Линии связи -- это линии между входным преобразователем и другой частью системы. Таких линий в строгом смысле может иногда и не быть, если, скажем, входной преобразователь размещается в нескольких сантиметрах от другой части системы. Если же он располагается на другом расстоянии от системы, то должны быть предприняты шаги к тому, чтобы линии связи не влияли либо слабо влияли на эффективность работы системы.

Там, где в системе имеются существенные линии связи, требуется один или 6oлee каскадов сопряжения сигналов, чтобы малый выходной сигнал входного преобразователя усилить, подвергнуть аналого-цифровому преобразованию, фильтрации, модуляции и т. п. Это необходимо для того, чтобы информация, выдаваемая первичным преобразователем, не терялась при передаче ее к другим частям системы. Такие каскады могут включать в себя и схемы обработки сигнала, в которых содержащиеся в сигнале входного преобразователя данные подвергаются цифровой обработке, а результирующий сигнал или результаты вычислений могут быть отображены на дисплее, запомнены или использованы в целях управления. Сопряжение сигналов может осуществляться в нескольких точках системы.

В некоторых случаях довольно сложно сделать заключение о том, где в системе аналоговые сигналы преобразователей становятся данными. Поэтому часто невозможно различать каскады формирования аналогового сигнала и обработки данных. К. счастью, это различие является довольно значительным.

Отображающие или запоминающие приборы -- это приборы, которые индицируют текущее значение измеряемой величины для удобства работы оператора системы или запоминают соответствующую информацию для ее последующего использования.

В случае управляющей системы (рис. 1.1, б) применяются некоторые виды компарирующих приборов, предназначенных для сравнения обрабатываемых данных с некоторыми опорными значениями и получения разностного сигнала.

Работающий по разностному сигналу выходной преобразователь используется для управления измеряемой величиной.

Безусловно, приведенные на рис. 1.1 примеры систем содержат не все типы каскадов формирования и обработки сигналов и не отражают всех режимов работы контрольно-измерительных и управляющих систем.

Вообще говоря, принципы работы входных и выходных преобразователей довольно просты. Конечно, режимы их работы существенно отличаются друг от друга -входные преобразователи обычно используются для преобразования изменений измеряемой величины в слабый электрический сигнал, а выходные преобразователи преобразуют мощный сигнал в сильное перемещение. По этой причине следует рассматривать два различных типа приборов. В докладе речь идет о входных преобразователях, которые являются воспринимающими элементами электронных систем.

Структурная схема любого преобразователя

Любой преобразователь можно рассматривать как устройство, структурная схема которого представлена на рис. 1.4. Здесь чувствительный элемент воспринимает змеряемое свойство объекта и преобразует его в другую физическую величину. Затем преобразующий элемент преобразует эту физическую величину в электрический сигнал, значение которого отражает уровень измеряемого свойства объекта. Другими возможными частями измерительного преобразователя являются схемы формирования сигнала и питания.

Рис. 1.4. Структурная схема измерительного преобразователя, включающая в себя элементы, общие для всех типов преобразователей. Показанные в пунктирных линиях элементы могут в некоторых преобразователях отсутствовать

Чувствительный элемент преобразует измеряемую часть физической величины в такую физическую величину, которая может быть воспринята и измерена преобразующим элементом. С этой точки зрения и сам чувствительный элемент можно рассматривать, строго говоря, как преобразователь.

Страницы: 1, 2