скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Усовершенствование характеристик видеотерминальных устройств (дисплеев) скачать рефераты

p align="left">Функциональные возможности LCD мониторов с активной матрицей почти такие же, как у дисплеев с пассивной матрицей. Разница заключается в матрице электродов, которая управляет ячейками жидких кристаллов дисплея. В случае с пассивной матрицей разные электроды получают электрический заряд циклическим методом при построчном обновлении дисплея, а в результате разряда емкостей элементов изображение исчезает, так как кристаллы возвращаются к своей изначальной конфигурации. В случае с активной матрицей к каждому электроду добавлен запоминающий транзистор, который может хранить цифровую информацию (двоичные значения 0 или 1) и в результате изображение сохраняется до тех пор, пока не поступит другой сигнал. Частично проблема отсрочки затухания изображения в пассивных матрицах решается за счет использования большего числа жидкокристаллических слоев для увеличения пассивности и уменьшения перемещений, теперь же, при использовании активных матриц появилась возможность сократить число жидкокристаллических слоев. Запоминающие транзисторы должны производиться из прозрачных материалов, что позволит световому лучу проходить сквозь них, а значит, транзисторы можно располагать на тыльной части дисплея, на стеклянной панели, которая содержит жидкие кристаллы. Для этих целей используются пластиковые пленки, называемые "Thin Film Transistor" (или просто TFT).

Технология TFT.

Thin Film Transistor (TFT), т.е. тонкопленочный транзистор - это те управляющие элементы, при помощи которых контролируется каждый пиксель на экране. Тонкопленочный транзистор действительно очень тонкий, его толщина 0,1 - 0,01 микрона.

В первых TFT-дисплеях, появившихся в 1972г., использовался селенид кадмия, обладающий высокой подвижностью электронов и поддерживающий высокую плотность тока, но со временем был осуществлен переход на аморфный кремний (a-Si), а в матрицах с высоким разрешением используется поликристаллический кремний (p-Si).

Технология создания TFT очень сложна, при этом имеются трудности с достижением приемлемого процента годных изделий из-за того, что число используемых транзисторов очень велико. Заметим, что монитор, который может отображать изображение с разрешением 800х600 пикселей в SVGA режиме и только с тремя цветами имеет 1440000 отдельных транзисторов.

Производители устанавливают нормы на предельное количество транзисторов, которые могут быть нерабочими в LCD дисплее. Правда, у каждого производителя свое мнение о том, какое количество транзисторов могут не работать.

Пиксель на основе TFT устроен следующим образом: в стеклянной пластине друг за другом интегрировано три цветных фильтра (красный, зеленый и синий). Каждый пиксель представляет собой комбинацию трех цветных ячеек или субпиксельных элементов (см. приложение Ж, рис. 11). Это означает, например, что у дисплея, имеющего разрешение 1280x1024, существует ровно 3840x1024 транзистора и субпиксельных элемента. Размер точки (пикселя) для 15.1" дисплея TFT (1024x768) приблизительно равен 0.0188 дюйма (или 0.30 мм), а для 18.1" дисплея TFT - около 0.011 дюйма (или 0.28 мм).

TFT обладают рядом преимуществ перед ЭЛТ-мониторами, среди которых - пониженное потребление энергии и теплоотдача, плоский экран и отсутствие следа от движущихся объектов. Последние разработки позволяют получить изображение более высокого качества, чем обычные TFT.

Совсем недавно специалистами компании Hitachi была создана новая технология многослойных ЖК-панелей Super TFT, которая значительно увеличила угол уверенного обзора ЖК панели. Технология Super TFT использует простые металлические электроды, установленные на нижней стеклянной пластине и заставляет молекулы вращаться, постоянно находясь в плоскости, параллельной плоскости экрана. Так как кристаллы обычной ЖК-панели поворачиваются к поверхности экрана оконечностями, то такие ЖКД более зависимы от угла зрения, чем ЖК-панели Hitachi с технологией Super TFT, в результате изображение на дисплее остается ярким и четким даже при больших углах обзора, достигая качества, сопоставимого с изображением на ЭЛТ-экране.

Некоторые параметры, определяющие качество LCD-монитора:

- Разрешение монитора.

Разрешение любого дисплея - это полное количество пикселей, формирующих изображение. Например, разрешение 1280 х 1024 означает, что изображение состоит из 1024 строк по 1280 точек в каждой. Чем выше разрешение, тем, естественно, более четким получается изображение.

Что касается разрешения LCD-дисплеев, то оно является единственным, его еще называют native, оно соответствует максимальному физическому разрешению CRT-мониторов. Именно в native разрешении LCD-монитор воспроизводит изображение лучше всего. Это разрешение определяется размером пикселей, который у LCD-монитора фиксирован. Например, если LCD-монитор имеет native разрешение 1024x768, то это значит, что на каждой из 768 линий расположено 1024 электродов, читай: пикселей. При этом есть возможность использовать и более низкое, чем native, разрешение. Для этого есть два способа. Первый называется "Centering" (центрирование); суть метода в том, что для отображения изображения используется только то количество пикселей, которое необходимо для формирования изображения с более низким разрешением. В результате изображение получается не во весь экран, а только в середине. Все неиспользуемые пиксели остаются черными, т.е. вокруг изображения образуется широкая черная рамка.

Второй метод называется "Expansion" (растяжение). Суть его в том, что при воспроизведении изображения с более низким, чем native, разрешением используются все пиксели, т.е. изображение занимает весь экран. Однако, из-за того, что изображение растягивается на весь экран, возникают небольшие искажения, и ухудшается резкость.

Сегодня каких-либо официальных стандартов обозначения разрешений дисплеев не существует, однако сложилась и успешно развивается полуофициальная система подобных наименований (см. приложение Е, таблица 1.1.).

- Угол обзора.

Пропускная способность жидкого кристалла зависит от угла наклона падающего света. Поэтому если смотреть на LCD-дисплей не строго перпендикулярно, а сбоку, то происходит затемнение изображения или искажение цвета. Некоторые фирмы предлагают различные технологии для устранения этого эффекта. В Apple Studio Display, например, используют особое пленочное покрытие, которое увеличивает качество изображения при «боковом» чтении. Существуют и другие технологии, однако в целом ряде случаев приемы, увеличивающие угол обзора, снижают динамические параметры отображения информации. Небольшой угол обзора -- это серьезная проблема, и стоит она тем острее, чем больше размер экрана. По свидетельству основных производителей, сегодняшняя технология позволяет увеличить этот угол до 140-150° в горизонтальной и 120° -- в вертикальной плоскости.

- Степень интерференции

Интерференция проявляется за счет влияния активизированных пикселов на соседние пассивные. Это явление в меньшей степени проявляется в мониторах с активной матрицей и в большей -- в мониторах с пассивной матрицей.

- Яркость

Яркость дисплея определяется яркостью заднего освещения и пропускной способностью панели. Пропускная способность жидкого кристалла мала, поэтому для увеличения яркости изображения применяют апертурную решетку с большим относительным отверстием и цветовые фильтры с высокой пропускной способностью.

- Контрастность.

Контрастность LCD-монитора определяется отношением яркостей между самым ярким белым и самым темным черным цветом. Хорошим контрастным соотношением считается 120:1, что обеспечивает воспроизведение живых насыщенных цветов. Контрастное соотношение 300:1 и выше используется тогда, когда требуется точное отображение черно-белых полутонов.

Сравнительные характеристики ЭЛТ и ЖК - мониторов представлены в таблице 1.2. (см приложение К).

1.4 Плазменные дисплеи

Коммерческий цикл любого изобретения не вечен, и производители, запустившие массовое производство LCD-мониторов, готовят следующее поколение технологий отображения информации. Устройства, которые придут на смену жидкокристаллическим, находятся на разных стадиях развития. Некоторые, такие, как LEP (Light Emitting Polymer -- светоизлучающие полимеры), только выходят из научных лабораторий, а другие, например на основе плазменной технологии, уже представляют собой законченные коммерческие продукты.

Размер всегда был главным препятствием при создании широкоэкранных мониторов. Мониторы размером больше 24 дюймов, созданные с использованием ЭЛТ технологии, слишком тяжелые и громоздкие. ЖК-мониторы -- плоские и легкие, но экраны, размер которых больше 20 дюймов, обладают слишком высокой себестоимостью. Плазменная технология нового поколения идеально подходит для создания больших экранов. Она позволяет выпускать плоские и легкие мониторы глубиной всего 9 сантиметров. Поэтому, несмотря на большой экран, они могут быть установлены в любом месте -- на стене, под потолком, на столе.

Благодаря широкому углу обзора изображение видно с любой точки. И что самое главное, плазменные мониторы способны передать цвет и резкость, которые раньше были недостижимы при таком размере экрана.

Идея использования газового разряда в средствах отображения не нова. Подобные устройства выпускались много лет назад в СССР в Рязани в НПО «Плазма». Однако размер элемента изображения был достаточно велик, так что для получения приличного изображения было нужно создавать огромные табло. Изображение было некачественным, передавалось мало цветов, устройства были крайне ненадежными.

За рубежом исследования и разработки в области этой технологии начались еще в начале 60-х годов. Еще лет пятьдесят назад было открыто одно интересное явление. Как оказалось, если катод заострить на манер швейной иглы, то электромагнитное поле в состоянии самостоятельно «выдергивать» из него свободные электроны. Необходимо только подать напряжение. По такому принципу работают лампы дневного света. Вылетающие электроны ионизируют инертный газ, чем заставляют его светиться. Трудность заключалась лишь в отработке технологии получения таких игольчатых матриц. Ее решили в Университете штата Иллинойс в 1966 году. В начале семидесятых годов компания Owens-Illinois довела проект до коммерческого состояния. В восьмидесятых годах эту идею пытались воплотить в реальный коммерческий продукт компании Burroughs и IBM, но тогда еще безуспешно.

Надо сказать, что идея плазменной панели появилась вовсе не из чисто научного интереса. Ни одна из существовавших технологий не могла справиться с двумя простыми задачами: добиться высококачественной цветопередачи без неизбежной потери яркости и создать телевизор с широким экраном, чтобы он при этом не занимал всю площадь комнаты. А плазменные панели (PDP), тогда только теоретически, подобную задачу как раз могли решить. Первое время опытные плазменные экраны были монохромными (оранжевыми) и могли удовлетворить спрос только специфических потребителей, которым требовалась, прежде всего, большая площадь изображения. Поэтому первую партию PDP (около тысячи штук) купила Нью-йоркская фондовая биржа.

Направление плазменных мониторов возродилось после того, как стало окончательно ясно, что ни ЖК-мониторы, ни ЭЛТ не в состоянии недорого обеспечить получение экранов с большими диагоналями (более двадцати одного дюйма). Поэтому лидирующие производители бытовых телевизоров и компьютерных мониторов, такие, как Hitachi, NEC и другие, вновь вернулись к PDP. В область плазменной технологии также обратили свои взоры и корейские компании «второй мировой линии», среди которых, например, Fujitsu, производящая более дешевую электронику, что тут же внесло остроту конкуренции. Сейчас Fujitsu, Hitachi, Matsushita, Mitsubishi, NEC, Pioneer и другие производят плазменные мониторы с диагональю 40 дюймов и более.

Принцип работы плазменной панели состоит в управляемом холодном разряде разреженного газа (ксенона или неона), находящегося в ионизированном состоянии (холодная плазма). Рабочим элементом (пикселем), формирующим отдельную точку изображения, является группа из трех субпикселей, ответственных за три основных цвета соответственно. Каждый субпиксель представляет собой отдельную микрокамеру, на стенках которой находится флюоресцирующее вещество одного из основных цветов (см. приложение Л, рис. 12). Пиксели находятся в точках пересечения прозрачных управляющих хром-медь-хромовых электродов, образующих прямоугольную сетку.

Для того, чтобы «зажечь» пиксель, происходит приблизительно следующее. На питающий и управляющий электроды, ортогональные друг другу, в точке пересечения которых находится нужный пиксель, подается высокое управляющее переменное напряжение прямоугольной формы. Газ в ячейке отдает большую часть своих валентных электронов и переходит в состояние плазмы. Ионы и электроны попеременно собираются у электродов, по разные стороны камеры, в зависимости от фазы управляющего напряжения. Для «поджига» на сканирующий электрод подается импульс, одноименные потенциалы складываются, и вектор электростатического поля удваивает свою величину. Происходит разряд -- часть заряженных ионов отдает энергию в виде излучения квантов света в ультрафиолетовом диапазоне (в зависимости от газа). В свою очередь, флюоресцирующее покрытие, находясь в зоне разряда, начинает излучать свет в видимом диапазоне, который и воспринимает наблюдатель. 97% ультрафиолетовой составляющей излучения, вредного для глаз, поглощается наружным стеклом. Яркость свечения люминофора определяется величиной управляющего напряжения.

Высокая яркость до 650 кд/м2 и контрастность до 3000:1 наряду с отсутствием дрожания являются большими преимуществами таких мониторов (для сравнения: у професионального ЭЛТ-монитора яркость равна приблизительно 350 кд/м2, а у телевизора -- от 200 до 270 кд/м2 при контрастности от 150:1 до 200:1). Высокая четкость изображения сохраняется на всей рабочей поверхности экрана. Кроме того, угол по отношению к нормали, под которым увидеть нормальное изображение на плазменных мониторах, существенно больше, чем у LCD-мониторов. К тому же плазменные панели не создают магнитных полей (что служит гарантией их безвредности для здоровья), не страдают от вибрации, как ЭЛТ-мониторы, а их небольшое время регенерации позволяет использовать их для отображения видео- и телесигнала. Отсутствие искажений и проблем сведения электронных лучей и их фокусировки присуще всем плоскопанельным дисплеям. Необходимо отметить и стойкость PDP-мониторов к электромагнитным полям, что позволяет использовать их в промышленных условиях -- даже мощный магнит, помещенный рядом с таким дисплеем, никак не повлияет на качество изображения. В домашних же условиях на монитор можно поставить любые колонки, не опасаясь возникновения цветных пятен на экране.

Главными недостатками такого типа мониторов является довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора и низкая разрешающая способность, обусловленная большим размером элемента изображения. Кроме этого, свойства люминофорных элементов быстро ухудшаются, и экран становится менее ярким. Поэтому срок службы плазменных мониторов ограничен 10000 часами (это около 5 лет при офисном использовании). Из-за этих ограничений, такие мониторы используются пока только для конференций, презентаций, информационных щитов, то есть там, где требуются большие размеры экранов для отображения информации. Однако есть все основания предполагать, что в скором времени существующие технологические ограничения будут преодолены, а при снижении стоимости, такой тип устройств может с успехом применяться в качестве телевизионных экранов или мониторов для компьютеров.

Неплохие перспективы PDP связывают с относительно низкими требованиями к производственным условиям; в отличие от TFT-матриц PDP-экраны можно изготовлять в условиях низких температур методом прямой печати.

Практически каждый производитель плазменных панелей добавляет к классической технологии некоторые собственные ноу-хау, улучшающие цветопередачу, контрастность и управляемость. В частности, NEC предлагает технологию капсулированного цветового фильтра (CCF), отсекающего ненужные цвета, и методику повышения контрастности за счет отделения пикселей друг от друга черными полосами (такая же технология используется Pioneer). В мониторах Pioneer также используются технология Enhanced Cell Structure, суть которой в увеличении площади люминофорного пятна, и новая химическая формула голубого люминофора, который дает более яркое свечение, и, соответственно, повышает контрастность. Компания Samsung разработала конструкцию монитора повышенной управляемости -- панель разделена на 44 участка, каждый из которых имеет собственный электронный блок управления.

Страницы: 1, 2, 3, 4, 5, 6