скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Усовершенствование материнской платы скачать рефераты

p align="left">1.2 Виды материнских плат

Количество производителей материальных плат много, а также их видов и одной страницы про материнские платы недостаточно. Самые популярные производители материнских плат: Asus, Microstar(MSI), Epox, GigaByte, Intel, Foxconn, EliteGroup и т.д.. Для каждой материнской платы есть своя характериститка и архитектура. При сборке учитываются множество показателей от комплектующих также от процессора, видеокарты, шины, блока питания и другое.

Существует несколько наиболее распространенных формфакторов, учитываемых при разработке системных плат. Формфактор представляет собой физические параметры платы и определяет тип корпуса, в котором она может быть установлена. Формфакторы системных плат могут быть стандартными (т. е. взаимозаменяемыми) или нестандартными. Нестандартные формфакторы, к сожалению, являются препятствием для модернизации компьютера, поэтому от их использования лучше отказаться.

Другие: независимые конструкции (разработки компаний Compaq, Packard Bell, Hewlett- Packard, портативные/мобильные системы и т. д.). За последние несколько лет произошел переход от системных плат оригинального формфактора Baby-AT, который использовался в первых компьютерах IBM PC и XT, к платам формфактора ATX и NLX, используемым в большинстве полноразмерных на стольных и вертикальных систем. Существует несколько вариантов формфактора ATX, в число которых входят Micro-ATX (который представляет собой уменьшенную версию формфактора ATX, используемого в системах малых размеров) и Flex-ATX (еще более уменьшенный вариант, предназначенный для домашних компьютеров низшего ценового уровня). Формфактор NLX предназначен для корпоративных настольных систем; WTX, в свою очередь, разрабатывался для рабочих станций и серверов со средним режимом работы, но широкого распространения не получил. Современные формфакторы и область их применения приведены в табл. 1.1.

Несмотря на широкое распространение плат Baby-AT, полноразмерной AT и LPX, им на смену пришли системные платы более современных формфакторов. Современные формфакторы фактически являются промышленным стандартом, гарантирующим совме стимость каждого типа плат. Это означает, что системная плата ATX может быть замене на другой платой того же типа, вместо системной платы NLX может быть использована другая плата NLX и т. д. Благодаря дополнительным функциональным возможностям современных системных плат, компьютерная индустрия смогла быстро перейти к новым Современные системные платы невозможно представить без микросхем системной логики. Набор микросхем подобен системной плате. Другими словами, две любые платы с одинаковым набором микросхем функционально идентичны. Набор микросхем систем ной логики включает в себя интерфейс шины процессора (которая называется также Front-Side Bus . FSB), контроллеры памяти, контроллеры шины, контроллеры ввода-вывода и т. п. Все схемы системной платы также содержатся в наборе микросхем. Если сравнивать процессор компьютера с двигателем автомобиля, то аналогом набора микросхем является, скорее всего, шасси. Оно представляет собой металлический каркас, служащий для установки двигателя и выполняющий роль промежуточного звена между двигателем и внешним миром. Набор микросхем это рама, подвеска, рулевой механизм, колеса и шины, коробка передач, карданный вал, дифференциал и тормоза. Шасси автомобиля представляет собой механизм, преобразующий энергию двигателя в поступательное движение транспортного средства. Набор микросхем, в свою очередь, является соединением процессора с различными компонентами компьютера. Процессор не может взаимодействовать с памятью, платами адаптера и различными устройствами без помощи наборов микросхем. Если воспользоваться медицинской терминологией и сравнить процессор с головным мозгом, то набор микросхем системной логики по праву займет место позвоночника и центральной нервной системы.

Набор микросхем управляет интерфейсом или соединениями процессора с различны ми компонентами компьютера. Поэтому он определяет в конечном счете тип и быстродействие используемого процессора, рабочую частоту шины, скорость, тип и объем памяти. В сущности, набор микросхем относится к числу наиболее важных компонентов системы, даже, наверное, более важных, чем процессор. Приходилось видеть системы с мощными процессорами, которые проигрывали в быстродействии системам, содержащим процессоры меньшей частоты, но более функциональные наборы микросхем. Во время соревнований опытный гонщик часто побеждает не за счет высокой скорости, а за счет умелого маневрирования. При компоновке системы требуется начать в первую очередь с набора микросхем системной логики, так как именно от его выбора зависит эффективность процессора, модулей памяти, устройств ввода-вывода, а также разнообразные возможности расширения. ATX

Конструкция ATX была разработана сравнительно недавно. В ней сочетаются наилучшие черты стандартов Baby-AT и LPX и заложены многие дополнительные усовершенствования. По существу, ATX , это ,лежащая на боку, плата Baby-AT с измененным разъемом и местоположением источника питания. Главное, что необходимо запомнить, конструкция ATX физически несовместима ни с Baby-AT, ни с LPX. Другими словами, для системной платы ATX нужен особый корпус и источник питания. Впервые официальная спецификация ATX была выпущена компанией Intel в июле 1995 года и представлена в качестве открытой промышленной спецификации. Системные платы ATX появились на рынке примерно в середине 1996 года и быстро заняли место ранее используемых плат Baby-AT. В феврале 1997 года появилась версия 2.01 спецификации ATX, после чего было сделано еще несколько незначительных изменений. В мае 2000 года выпускается последняя (на текущий момент) редакция спецификации ATX (содержащая рекомендацию Engineering Change Revision PI), которая получила номер 2.03. Компания Intel опубликовала подробную спецификацию ATX, тем самым открыв ее для сторонних производителей. В настоящее время ATX является наиболее распространенным формфактором системных плат, рекомендуемым для большинства новых систем. Система ATX останется расширяемой в течение еще многих лет, в чем она похожа на предшествующую ей системную плату Baby-AT.

Конструкция ATX позволила усовершенствовать стандарты Baby-AT и LPX. Наличие встроенной двойной панели разъемов ввода-вывода. На тыльной стороне системной платы есть область с разъемами ввода-вывода шириной 6,25 и высотой 1,75 дюйма. Это позволяет расположить внешние разъемы непосредственно на плате и исключает необходимость использования кабелей, соединяющих внутренние разъемы и заднюю панель корпуса, как в конструкции Baby-AT.

Наличие одноключевого внутреннего разъема источника питания. Это упрощает замену разъемов на источнике питания типа Baby-AT. Спецификация ATX содержит одноключевой разъем источника питания, который легко вставляется и который невозможно установить неправильно. Этот разъем имеет контакты для подвода к системной плате напряжения 3,3 В, а это означает, что для системной платы ATX не нужны встроенные преобразователи напряжения, которые часто выходят из строя. В спецификацию ATX были включены два дополнительных разъема питания, по лучивших название вспомогательных силовых разъемов (3,3 и 5 В), а также разъем ATX12V, используемый в системах, потребляющих большее количество электроэнергии, чем предусмотрено оригинальной спецификацией.

1.4 Системы, расположенные на материнской плате

Процессор - основная микросхема компьютера, в которой и производятся все вычисления.

Конструктивно процессор состоит из ячеек, похожих на ячейки оперативной памяти, но в этих ячейках данные могут не только храниться, но и изменяться.

Внутренние ячейки процессора называются регистрами. Важно также отметить, что данные, попавшие в некоторые регистры, рассматриваются не как данные, а как команды, управляющие обработкой данных в других регистрах. Среди регистров процессора есть и такие, которые в зависимости от своего содержания способны модифицировать исполнение команд. Таким образом, управляя засылкой данных в разные регистры процессора, можно управлять обработкой данных. На этом и основано исполнение программ.

С остальными устройствами компьютера, и в первую очередь с оперативной памятью, процессор связан несколькими группами проводников, называемых шинами. Основных шин три: шина данных, адресная шина и командная шина.

Адресная шина. У процессоров семейства Pentium (а именно они наиболее распространены в персональных компьютерах) адресная шина 32-разрядная, то есть состоит из 32 параллельных проводников.

В зависимости от того, есть напряжение на какой-то из линий или нет, говорят, что на этой линии выставлена единица или ноль. Комбинация из 32 нулей и единиц образует 32-разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копирования данных из ячейки в один из своих регистров.

Шина данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и обратно. В современных персональных компьютерах шина данных, как правило, 64-разрядная, то есть состоит из 64 линий, по которым за один раз на обработку поступают сразу 8 байтов.

Шина команд. Для того чтобы процессор мог обрабатывать данные, ему нужны команды. Он должен знать, что следует сделать с теми байтами, которые хранятся в его регистрах. Эти команды поступают в процессор тоже из оперативной памяти, но не из тех областей, где хранятся массивы данных, а оттуда, где хранятся программы. Команды тоже представлены в виде байтов. Самые простые команды укладываются в один байт, однако есть и такие, для которых нужно два, три и более байтов. В большинстве современных процессоров шина команд 32-разрядная, хотя существуют 64-разрядные процессоры и даже 128-разрядные.

Система команд процессора. В процессе работы процессор обслуживает данные, находящиеся в его регистрах, в поле оперативной памяти, а также данные, находящиеся во внешних портах процессора. Часть данных он интерпретирует непосредственно как данные, часть данных - как адресные данные, а часть - как команды.

Совокупность всех возможных команд, которые может выполнить процессор над данными, образует так называемую систему команд процессора. Процессоры, относящиеся к одному семейству, имеют одинаковые или близкие системы команд.

Процессоры, относящиеся к разным семействам, различаются по системе команд и невзаимозаменяемые. Процессоры с расширенной и сокращенной системой команд. Чем шире набор системных команд процессора, тем сложнее его архитектура, тем длиннее формальная запись команды (в байтах), тем выше средняя продолжительность исполнения одной команды, измеренная в тактах работы процессора. Так, например, система команд процессоров семейства Pentium в настоящее время насчитывает более тысячи различных команд. Такие процессоры называют процессорами с расширенной системой команд - CISС-процессорами (CISC - Complex Instruction Set Computing).

В противоположность СISC-процессорам в середине 80-х годов появились процессоры архитектуры RISC с сокращенной системой команд (RISC - Reduced Instmction Set Computing). При такой архитектуре количество команд в системе намного меньше и каждая из них выполняется намного быстрее. Таким образом, программы, состоящие из простейших команд, выполняются этими процессорами много быстрее.

Оборотная сторона сокращенного набора команд состоит в том, что сложные операции приходится эмулировать далеко не эффективной последовательностью простейших команд сокращенного набора.

В результате конкуренции между двумя подходами к архитектуре процессоров сложилось следующее распределение их сфер применения:

- СISС-процессоры используют в универсальных вычислительных системах;

- RISС-процессоры используют в специализированных вычислительных системах или устройствах, ориентированных на выполнение единообразных операций.

Персональные компьютеры платформы IВМ РС ориентированы на использование CISC-процессоров.

Совместимость процессоров. Если два процессора имеют одинаковую систему команд, то они полностью совместимы на программном уровне. Это означает, что программа, написанная для одного процессора, может исполняться и другим процессором. Процессоры, имеющие разные системы команд, как правило, несовместимы или ограниченно совместимы на программном уровне.

Группы процессоров, имеющих ограниченную совместимость, рассматривают как семейства процессоров. Так, например, все процессоры Intel Pentium относятся к так называемому семейству x86. Родоначальником этого семейства был 16-разрядный процессор Intel 8086, на базе которого собиралась первая модель компьютера IBM PC. Впоследствии выпускались процессоры Intel 80286, Intel 80386, Intel 80486, несколько моделей Intel Pentium; несколько моделей Intel Pentium ММХ, модели Intel Pentium Pro, Intel Pentium II, Intel Celeron, Intel Xeon, Intel Pentium III, Intel Pentium 4 и другие. Все эти модели, и не только они, а также многие модели процессоров компании AMD и некоторых других производителей относятся к семейству х86 и обладают совместимостью по принципу "сверху вниз".

Принцип совместимости "сверху вниз" - это пример неполной совместимости, когда каждый новый процессор "понимает" все команды своих предшественников, но не наоборот. Это естественно, поскольку двадцать лет назад разработчики процессоров не могли предусмотреть систему команд, нужную для современных программ. Благодаря такой совместимости на современном компьютере можно выполнять любые программы, созданные в последние десятилетия для любого из предшествующих компьютеров, принадлежащего той же аппаратной платформ.

Основные параметры процессоров. Основными параметрами процессоров являются: рабочее напряжение, разрядность, рабочая тактовая частота, коэффициент внутреннего умножения тактовой частоты и размер кэш-памяти.

Рабочее напряжение процессора обеспечивает материнская плата, поэтому разным маркам процессоров соответствуют разные материнские платы (их надо выбирать совместно). По мере развития процессорной техники происходит постепенное понижение рабочего напряжения. Ранние модели процессоров х86 имели рабочее напряжение 5 В. С переходом к процессорам Intel Pentium оно было понижено до 3,3 В, а в настоящее время оно составляет менее 2 В. Понижение рабочего напряжения позволяет уменьшить расстояния между структурными элементами в кристалле процессора до десятитысячных долей миллиметра, не опасаясь электрического пробоя. Пропорционально квадрату напряжения уменьшается и тепловыделение в процессоре, а это позволяет увеличивать его производительность без угрозы перегрева.

Разрядность процессора показывает, сколько бит данных он может принять и обработать в своих регистрах за один раз (за один такт). Первые процессоры xS6 были 16-разрядными. Начиная с процессора 80386 они имеют 32-разрядную архитектуру. Современные процессоры семейства Intel Pentium остаются 32-разрядными, хотя и работают с 64-разрядной шиной данных (разрядность процессора определяется не разрядностью шины данных, а разрядностью командной шины). 64-разрядных процессоров на персональные компьютеры.

В основе работы процессора лежит тот же тактовый принцип, что и в обычных часах. Исполнение каждой команды занимает определенное количество тактов. В настенных часах такты колебаний задает маятник; в ручных механических часах их задает пружинный маятник; в электронных часах для этого есть колебательный контур, задающий такты строго определенной частоты. В персональном компьютере тактовые импульсы задает одна из микросхем, входящая в микропроцессорный комплект (чипсет), расположенный на материнской плате. Чем выше частота тактов, поступающих на процессор, тем больше команд он может исполнить в единицу времени, тем выше его производительность. Первые процессоры х86 могли работать с частотой не выше 4,77 МГц, а сегодня рабочие частоты некоторых процессоров уже превосходят 4 миллиарда тактов в секунду (3 ГГц).

Тактовые сигналы процессор получает от материнской платы, которая, в отличие от процессора, представляет собой не кристалл кремния, а большой набор проводников и микросхем. По чисто физическим причинам материнская плата не может работать со столь высокими частотами, как процессор. Сегодня базовая частота материнской платы составляет около 400 МГц. Для получения более высоких частот в процессоре происходит внутреннее умножение частоты. Коэффициент внутреннего умножения в современных процессорах может достигать 10-20 и выше. Обмен данными внутри процессора происходит в несколько раз быстрее, чем обмен с другими устройствами, например с оперативной памятью. Для того чтобы уменьшить количество обращений к оперативной памяти, внутри процессора создают буферную область - кэш-память.

Страницы: 1, 2, 3