скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Усилитель систем автоматики скачать рефераты

p align="left">- изменение обратного тока коллектора при изменении температуры.

- внутреннее изменение смещения на эмиттерном переходе (В для Si).

А - приращение тока коллектора вызванное температурным изменением B ().

- допустимое изменение тока в рабочей точке.

Исходя из известного сопротивления найдем значения параметра , а следовательно сопротивление делителя.

при , таким образом, кОм.

При таком сопротивлении точно не будет соблюдено условие

Сопротивления делителя рассчитаем исходя из условия получения максимального входного сопротивления при

Термостабильность каскада будет обеспечена с большим запасом

В,

В.

,

Ом,Ом

Выберем по ряду номиналов кОм, кОм

Входное сопротивление каскада:

, где Ом,

Входное сопротивление транзистора в схеме с ОК в F раз больше входного сопротивления схемы с ОЭ.

Ом

кОм

Входная емкость каскада:

пФ.

Схема каскада:

1.5 Расчёт второго каскада

Второй каскад выполним по схеме ОЭ. Расчёт будем производить по той же методике, что мы использовали для расчета эмиттерного повторителя, но с некоторыми отличиями, так как сами схемы включения транзистора в каскаде различны.

Определим параметры по которым будем выбирать транзистор:

Где Umвых = 0,75 В

Imвых = 0,002 А

Этим условиям соответствует транзистор КТ312А. Этот же транзистор мы использовали и в эмиттерном повторителе. Использование одного и того же транзистора позволит уменьшить спектр используемых, при будущем производстве усилителя, активных элементов, что технологически выгодно.

Найдём из рабочей точки и приращений токов и напряжений в ней, следующие параметры:

Так как мы работаем на эмиттерный повторитель, то его входные параметры будут являться параметрами нагрузки для данного каскада:

Из нагрузочной прямой по постоянному току находим:

Ом

Произведем расчет термостабилизации каскада:

, где

- статический коэффициент передачи тока базы.

- изменение обратного тока коллектора при изменении температуры (а = 0,1…0,13 для Si).

В

- внутреннее изменение смещения на эмиттерном переходе (В для Si).

- приращение тока коллектора вызванное температурным изменением

B ().

мА

- допустимое изменение тока в рабочей точке

Параметр характеризует сопротивление делителя по переменному току:

Возьмем , тогда:

Сопротивление в цепи коллектора равно:

Ом, возьмем по ряду номиналов

Ом

Расчёт на СЧ:

Схема замещения на СЧ:

В эквивалентной схеме каскада на СЧ можно пренебречь емкостями и .

Коэффициент усиления каскада равен:

,

Ом.

Для получения требуемого коэффициента усиления введем ООС с фактором равным:

где - сопротивление, вводимое в цепь эмиттера для получения необходимого фактора ООС.

Ом по ряду номиналов возьмем Ом.

Введение такого сопротивления в цепь эмиттера только улучшит термостабильность каскада.

Коэффициент усиления каскада при

Ом будет равен:

Расчёт на ВЧ:

Схема замещения на ВЧ:

Частотные искажения на ВЧ обуславливаются падением крутизны транзистора на высоких частотах и влиянием ёмкости Со.

, где

- эквивалентная емкость.

Емкость С22 находим по формуле:

где Ск - справочный параметр равный: Ск = 30 пФ

Тогда эквивалентная емкость будет равна:

Тогда:

Расчёт на НЧ:

Схема замещения:

Для того, чтобы скомпенсировать завал на НЧ и, самое главное, чтобы уменьшить номиналы конденсаторов Сэ, мы используем НЧ - коррекцию, введя в цепь коллектора элементы Rф и Cф. Расчёт производится для ёмкостей Ср и Сф одновременно. Основным условием применения этого метода коррекции является высокоомность нагрузки каскада с коррекцией. Метод расчёта указан в литературе [3] и заключается в следующем:

Зададимся допустимым падением напряжения на Rф:

Постоянная составляющая тока коллектора равна:

Отсюда находим сопротивление Rф:

Это сопротивление соответствует номинальному ряду сопротивлений.

Найдём b, как соотношение между Rк и Rф:

Далее находим график с системой кривых для значения b = 0,5.

Из этого графика находим такое значение параметра Xн, при котором происходит перекоррекция до уровня Мн=1,45. Этому условию соответствует кривая для параметра m=0,6 и Xн=1,1, где

, а

Из этих выражений можно найти значение нужных нам емкостей по формулам:

Таким образом мы получили перекоррекцию в каскаде Мн=1,45.

Расчёт делителя, входных сопротивления и ёмкости:

Проведем расчет делителя напряжения в цепи базы:

по ряду номиналов берем кОм.

по ряду номиналов возьмем кОм.

Проведем проверку:

> А.

Входное сопротивление каскада:

, где кОм,

Входное сопротивление транзистора в схеме с ОЭ, при введении фактора ОС, в F раз больше входного сопротивления схемы с ОЭ без ООС.

кОм

Входная емкость каскада:

1.6 Расчёт первого каскада

Первый каскад, для увеличения входного сопротивления усилителя, а как следствие и увеличения коэффициента передачи по напряжению входной цепи, будет выполнен на полевом транзисторе. Отличие усилительного каскада на ПТ от эмиттерного повторителя (который также имеет высокое входное сопротивление) в том, что коэффициент усиления по напряжению каскада на ПТ больше 1 (реально К=1..5 в зависимости от транзистора). Расчёт каскада на полевом транзисторе несколько отличается от расчёта каскадов на биполярном транзисторе. Это несёт важную методическую функцию - при расчете одного усилителя мы разобрали три различных методики расчета каскадов на полевом/биполярном транзисторах в схемах включения с ОК и ОЭ (ОИ).

Во входном каскаде используем МДП-транзистор со встроенным n-каналом КП313А:

пФ, пФ, В, мА, мВт, мкСм, нА.

Найдём крутизну транзистора в рабочей точке

(мА, В, В) из графиков, представленных в справочнике:

мСм.

По нагрузочной прямой находим :

Ом.

Проведем расчет термостабилизации каскада:

Где: А - изменение тока утечки затвора от температуры.

- допустимое изменение тока стока в рабочей точке.

В - сдвиг напряжения между затвором и истоком при изменении температуры.

МОм - сопротивление в цепи затвора характеризует входное сопротивление каскада.

Ом.

Отрицательное значение означает, что в выбранном режиме транзистор не нуждается в стабилизации.

Следовательно

Ом (по ряду номиналов возьмем Ом).

Расчёт на СЧ:

Схема замещения:

Найдем номинальный коэффициент усиления каскада:

Ом.

Расчёт на ВЧ:

Схема замещения:

Коэффициент частотных искажений на ВЧ будет равен:

, где ,

Ом,

пФ.

.

.

Расчёт на НЧ:

Схема замещения:

Найдем значение разделительной емкости Допустимые частотные искажения

тогда:

(По ряду номиналов возьмем мкФ).

1.7 Расчёт фильтров питания. Расчёт цепей регулировки усиления. Расчёт разделительной ёмкости во входной цепи

Расчёт фильтра питания:

Фильтр по питанию рекомендуется ставить после двух инвертирующих каскадов. В нашем случае мы несколько отступим от данной рекомендации и поставим фильтр по питанию после эмиттерного повторителя (3-ий каскад), перед предоконечным каскадом.

Расчет фильтра производится следующим образом:

Задаёмся падением напряжения на фильтре:

Тогда:

Где - ток коллектора транзистора каскада 3 в рабочей точке,

мА,

- токи делителей каскадов 3 и 2, рассчитаны выше при проверке.

мкА, мкА

мА - ток стока в рабочей точке транзистора первого каскада.

Тогда сопротивление будет равно:

По ряду номиналов возьмемОм.

Емкости в цепи фильтров будут равны на частоте помехи Гц (частота питающей сети) и выше:

.

С запасом, по ряду номиналов возьмем мкФ.

Расчёт регулировки усиления:

Подстройку усиления будем производить изменением глубины ООС одного из каскадов и выберем для этого предоконечный каскад (так как в нём единственном остался Сэ, необходимый для реализации этого метода). Введем для этого сопротивление в цепи эмиттера. Движок резистора подключим к шунтирующей емкости .

Максимальный коэффициент усиления равен:

Минимальный коэффициент усиления возьмем равным (меньше номинального коэффициента усиления на 20…30%):

,

- максимальный фактор обратной связи для - резистора подстройки усиления.

Ом.

Используем для этого подстроечный резистор СП3-28 сопротивлением 10 Ом по ряду номиналов Е6.

Оставшуюся часть сопротивления Ом (62 Ом по ряду номиналов) подключим последовательно с .

Рассчитаем номинал ёмкости Сэ для шунтирования Ом с учётом того, что мы уже рассчитали частотные искажения Мн в области НЧ для всех остальных каскадов и ввели перекоррекцию на НЧ в одном из каскадов.

Частотные искажения на НЧ заданные на весь усилитель равны: Мн=0,77

Частотные искажения вносимые всеми каскадами кроме предоконечного равны:

где Мнi - искажения вносимые i-ым каскадом.

Следовательно на предоконечный каскад, для обеспечения уровня общих искажений усилителя:

Подставив это значение в выражение для нахождения Сэ 4-го каскада (см. выше), получим:

По ряду номинальных значений с запасом выберем Сэ=500мФ.

Расчёт разделительной ёмкости во входной цепи:

Произведем расчет разделительной емкости СР во входной цепи:

По ряду номиналов возьмем пФ.

Расчёт цепи ООС:

Для устранения усиления на частотах выше Fв, введём цепь частотнозависимой отрицательной обратной связи, охватывающей все каскады кроме первого. Введение этой отрицательной обратной связи никак не влияет на свойства усилителя в полосе пропускания, но за пределами полосы она обеспечивает снижение усиления, что не даёт возможность усилителю самовозбудиться на частоте выше Fв, где может выполниться условие баланса фаз и амплитуд. Порядок расчёта следующий:

Так как цепь отрицательной обратной связи представляет из себя ВЧ-фильтр на RC-цепочке. В роли активного сопротивления будет выступать Rвх второго каскада усилителя.

Таким образом нам осталось лишь задаться коэффициентом передачи по напряжению на частоте Fв и найти значение ёмкости в цепи ООС:

Такой коэффициент передачи не увеличит уровень частотных искажений на ВЧ сверх заданных.

2. Расчет варианта усилителя на микросхемах

2.1 Анализ варианта усилителя на ИМС:

В данном варианте усилителя используем интегральную микросхему A2030H -усилитель мощности низкой частоты с дифференциальным входом и двухполярным питанием и операционный усилитель 140УД10 в качестве входного, «раскачивающего» более мощную микросхему, каскада. Микросхему A2030H и её характеристики мы нашли в литературе [5]. Будем использовать стандартную схему включения микросхемы.

Микросхему 140УД10 также будем включать в стандартном неинвертирующем включении (см [6]):

Справочные параметры микросхем:

А2030Н: 140УД10

Сопротивление нагрузки (Rн=13 Ом) в нашем случае больше чем номинальная нагрузка второго каскада. По графику, представленному в техническом описании, определим максимальную мощность, которую может выдать, на данную нагрузку, микросхема А2030Н при напряжении питания ±12 В.

Получим: Это значение выше, чем заданное в техническом задании, следовательно, по этому параметру микросхема подходит.

Одна микросхема А2030Н способна обеспечить усиление в 30 дБ в заданной полосе частот.

Переведём коэффициент усиления в децибелах в коэффициент усиления по напряжению:

Это максимальное усиление, которое можно получить от одной микросхемы, так как оно меньше того, что нам надо (Ku=325), то используем каскадное соединение двух микросхем А2030Н и 140УД10.

Рассмотрим предназначение каждого элемента в стандартной схеме включения А2030Н:

R1 - обеспечивает отрицательную обратную связь;

R2 - определяет коэффициент усиления каскада по формуле:

R3 - определяет входное сопротивление каскада;

С1 - разделительная ёмкость на входе каскада;

С2 - разделительный конденсатор на инвертирующем входе;

С3, С4 - ёмкости, сглаживающие пульсации питания;

D1, D2 - диоды, защищающие от переполюсовки питания и выбросов выходного сигнала. Эти диоды можно заменить аналогами (КД243 или КД247 с любым буквенным индексом).

Регулировку усиления будем производить изменением сопротивления в цепи обратной связи (резистор R4 второго каскада).

2.2 Расчет элементов первого каскада:

Выберем его имея в виду, что:

Выберем таким, чтобы выполнялось ранее написанное условие:

.

Поскольку от источника сигнала мы получаем меньше половины напряжения сигнала, мы должны проверить, сможем ли мы получить надлежащее усиление на данных микросхемах на двух каскадах:

при заданном К и Квц усиление каскадов К1,К2=30. Такой коэффициент усиления могут выдать обе этих микросхемы в заданном диапазоне частот.

Из условия протекания малых токов смещения

Исходя из выражения, что коэффициент усиления каскада равен:

и коэффициент усиления для первого каскада возьмём равным

Подставив полученное выражение в формулу для R3, получим:

Зная номинал R3, найдём:

Расчёт конденсатора С1 производится аналогично разделительной ёмкости в транзисторном варианте:

С2 - Рассчитаем из заданной нижней граничной частоты, причём взяв её с запасом в меньшую сторону (ёмкость конденсатора увеличиваем). Частоту можно выразить через постоянную времени RC - цепи.

Так как мы условились увеличить ёмкость, то возьмём её, чтобы не плодить новые номиналы ёмкостей, равной ёмкости

С1. .

Для балансировки нуля на микросхеме 140УД10 имеются два выхода. Сама цепь балансировки представляет из себя два резистора, подстроечный и постоянный (R4 и R5) следующих номиналов:

2.3 Расчет элементов второго каскада

Сопротивлениевыберем также исходя из условия, что оно должно быть на порядок меньше RвхОУ.

Из условия протекания малых токов смещения

Исходя из выражения, что коэффициент усиления каскада равен:

и коэффициент усиления для первого каскада возьмём равным

Страницы: 1, 2, 3