скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Усилитель мощности звуковой частоты скачать рефераты

Усилитель мощности звуковой частоты

46

Московский ордена Ленина, ордена Октябрьской Революции и ордена Трудового Красного Знамени Государственный Технический Университет имени Н.Э. Баумана

Факультет ЭИУК

Кафедра ЭИУ -1 КФ

РАСЧЁТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по микросхемотехнике

на тему: “Усилитель мощности звуковой частоты“

Студент: Перцев А.М.

Группа: РПД - 71

Руководитель проекта: Лоскутов С.А.

Калуга 2007 г.

Задание

Промоделировать схему усилителя НЧ на МДП- транзисторах в программе Multisim 8. Также проверить характеристики получившийся схемы на соответствие техническим характеристикам данного усилителя используя следующие анализы, входящие в пакет Multisim 8:

- Анализ по переменному току (АЧХ, ФЧХ);

- Анализ Фурье;

- Переходный анализ;

- Температурный анализ;

- Параметрический анализ;

- Анализ сигнал/шум

-Анализ искажений

- THD анализ

Введение

В настоящее время в технике повсеместно используются разнообразные усилительные устройства. В каждом радиоприёмнике, в каждом телевизоре, в компьютере и станке с числовым программным управлением есть усилительные каскады. В зависимости от типа усиливаемого параметра усилительные устройства делятся на усилители тока, напряжения и мощности. Усилитель мощности предназначен для передачи больших мощностей сигнала без искажений во внешнюю нагрузку в качестве которой обычно выступает акустическая система. Обычно они являются выходными каскадами многокаскадных усилителей. Основной задачей усилителя мощности является выделение на нагрузке возможно большей мощности.

Усиление напряжения в усилителе мощности является второстепенным фактом. Для того чтобы усилитель отдавал в нагрузку максимальную мощность, необходимо выполнить условие RВЫХ=RН. Основными показателями усилителя мощности являются: отдаваемая в нагрузку полезная мощность PН, коэффициент полезного действия, коэффициент нелинейных искажений KГ и полоса пропускания АЧХ. Значительный запас мощности, которым обладает усилитель, позволяет получить большой динамический диапазон громкостей, что повышает естественность звучания, улучшает стабильность работы при номинальной мощности и обеспечивает незначительные нелинейные искажения. Максимальная выходная мощность , которая может быть передана в нагрузку, полностью определяется параметрами выходных транзисторов. Поэтому для усилителей мощности типичным является применение в оконечном каскаде высоковольтных транзисторов повышенной мощности, потребляющих больщую энергию от источника питания. В свою очередь, максимальное использование выходных транзисторов по напряжению и току приводит к росту нелинейных искажений.

Снижение уровня нелинейных искажений достигается в основном введением глубокой ООС. Однако при этом возрастает запаздывание сигнала на выходе и в цепи ООС, что является причиной динамических искажений.

На слух динамические искажения проявляются в виде потери высших частот, неестественным оттенке звучания. Степень динамических искажений оценивается по скорости нарастания выходного напряжения усилителя мощности. Для уменьшения динамических искажений в высококачественных усилителях глубина ООС ограничивается в пределах 20..30 дБ.

В качестве оконечных применяют мощные высокочастотные биполярные и полевые транзисторы, которые позволяют повысить диапазон усиливаемых частот и тем самым повысить быстродействие усилителя.

Меры, применяемые для снижения динамических искажений, приводят к возрастанию нелинейных искажений, и условие обеспечения их на низком уровне является противоречивым.

Режим работы оконечного каскада определяется режимом покоя (классом усиления) входящих в него комплементарных пар биполярных транзисторов. Существует пять классов усиления: А, В, АВ, С и D.

Режим класса А характеризуется низким уровнем нелинейных искажений (KГ = 1%) низким КПД (<0,4). На выходной вольтамперной характеристике (ВАХ) в режиме класса А рабочая точка (IК0 и UКЭ0) располагается на середине нагрузочной прямой так, чтобы амплитудные значения сигналов не выходили за те пределы нагрузочной прямой, где изменения тока коллектора прямо пропорциональны изменениям тока базы. При работе в режиме класса А транзистор всё время находится в открытом состоянии и потребление мощности происходит в любой момент. Режим усиления класса А применяется в тех случаях, когда необходимы минимальные искажения.

Режим класса В характеризуется большим уровнем нелинейных искажений (KГ=10%) и относительно высоким КПД (<0,7). Для этого класса характерен IБ0 = 0 ,то есть в режиме покоя транзистор закрыт и не потребляет мощности от источника питания. Режим В применяется в мощных выходных каскадах, когда не важен высокий уровень искажений.

Режим класса АВ занимает промежуточное положение между режимами классов А и В. Он применяется в двухтактных устройствах. В режиме покоя транзистор лишь немного приоткрыт, в нём протекает небольшой ток IБ0, выводящий основную часть рабочей полуволны Uвх на участок ВАХ с относительно малой нелинейностью. Так как IБ0 мал, то здесь выше, чем в классе А, но ниже, чем в классе В, так как всё же IБ0 > 0. Нелинейные искажения усилителя, работающего в режиме класса АВ, относительно невелики (KГ=3%) .

Внедрение в современную инженерную практику различных методов автоматизированного проектирования позволило перейти от макетирования, традиционно проводившегося для разрабатываемой аппаратуры к ее моделированию с помощью ЭВМ. Кроме того, при помощи ПК возможно осуществление сквозного проектирования, включающего в себя:

синтез структуры и принципиальной схемы устройства;

анализ характеристик в различных режимах с учетом разброса параметров компонентов, наличия факторов дестабилизирующих работу устройства и параметрическую оптимизацию;

синтез топологии, включая размещение элементов на плате или кристалле и разводку меж соединений;

верификацию топологии;

выпуск конструкторской документации.

В данной работе, с помощью современных средств проектирования и разработки электронных схем, промоделирована работа схемы усилителя мощности звуковой частоты на зарубежных аналогах отечественных элементов, а также на созданных в процессе работы моделях отечественных активных элементах. Для данной схемы были получены ее основные характеристики (АЧХ, ФЧХ, коэффициент искажений, переходная характеристика и другие), а также зависимость амплитудно-частотной и фазо-частотной характеристик от температуры и параметра регулировочного элемента (резистора, определяющего ток покоя транзисторов выходного каскада). Перечисленные анализы были проведены как для схемы на импортных аналогах, так и на отечественных моделях. Для сравнительного анализа характеристик импортных и отечественных транзисторов и диодов были построены их вольт-амперные характеристики с помощью программы PSpice. В качестве среды для моделирования работы схемы применялась программа Electronics Workbench Multisim8.

Теоретические сведения об устройстве

К достоинствам описываемых усилителей можно отнести низкий коэффициент гармонических искажений во всей полосе рабочих частот, плавное ограничение максимальных уровней сигнала. Высокое выходное сопротивление одного из усилителей способствует уменьшению интермодуляционных искажений головок в средне- и высокочастотной полосе. Низкое выходное сопротивление другого демпфирует громкоговоритель в широкой полосе частот.

Исходя из перечисленных особенностей работы усилителя и громкоговорителя, было разработано два усилителя. В первом из них (его схема на рис. 1) имеются две петли общей ООС: по переменному току -- через R5, С6 и по постоянному напряжению -- через интегратор на DA1. Применение интегратора исключает постоянную составляющую на выходе усилителя даже при ее наличии на входе, например, из-за утечки переходного конденсатора на выходе темброблока или линейного усилителя. Такое решение благоприятно сказывается и на демпфировании громкоговорителя. Усилитель имеет практически нулевое выходное сопротивление на инфранизких частотах и на постоянном токе, что эквивалентно демпфированию громкоговорителя вторичной обмоткой трансформаторного УМЗЧ на лампах. При этом исключаются возникающие с некоторыми транзисторными УМЗЧ инфранизкоча-стотные колебания низкочастотной головки.

В выходном каскаде в двухступенчатом усилителе тока применены БСИТ. Такие транзисторы отличаются высокой крутизной, малым остаточным напряжением насыщения, быстрым переключением и относительно высоким коэффициентом передачи по току в линейном режиме.

Используемые в усилителе дифференциальные каскады с местной ООС, как известно, отличаются повышенной перегрузочной способностью, а искажения в них в значительной степени компенсируются.

Диодами VD3--VD6 достигаются необходимые сдвиги уровня для обеспечения режима транзисторов VT10, VT12. Суммирование сигналов с повторителей на VT7, VT9 и VT8, VT13 происходит соответственно на транзисторах VT10 и VT12. Резисторы R20. R21 являются, с одной стороны, местной ОС для VT10, VT12, с другой -- нагрузкой эмиттерных повторителей на транзисторах VT9, VT13.

Ограничение сигнала на выходе второго каскада, а соответственно и усилителя в целом, происходит раньше, чем в обычных усилителях, примерно на 3 В (за счет падения напряжения на транзисторах VT9, VT13). При этом с дальнейшим ростом входного напряжения не происходит жесткого ограничения сигнала, так как транзисторы VT10, VT12 переходят в режим плавного насыщения. Таким образом, амплитудное значение сигнала на выходе усилителя такое же, как в обычном усилителе, но без жесткого ограничения. Это схемотехническое решение позволяет получить характер искажений при перегрузке, подобный ламповым усилителям.

Термостабилизацию каскада обеспечивает транзистор VT14. Ток покоя каждого из выходных транзисторов VT17--VT20 на уровне около 80 мА устанавливают резистором R24.

При исправных деталях налаживание усилителя сводится к установке тока покоя каждого из выходных транзисторов в пределах 60... 100 мА.

Выходные каскады усилителя с низким выходным сопротивлением, более подходящего для громкоговорителя НЧ, выполнены на более доступной элементной базе (рис. 2). Остальная часть схемы практически аналогична рассмотренной ранее (на рис. 1 она отделена штрихпунктирной линией).

Двухтактный выходной каскад на VT15--VT18 выполнен по схеме ОЭ-ОЭ с глубокой ООС. Цепь смещения на диодах VD9, VD10 дополнена резисторами R23, R24, которые обеспечивают малые изменения входного сопротивления каскада и тока через диоды VD9, VD10 даже при отсечке тока в противоположном плече каскада.

Защита от короткого замыкания в нагрузке выполнена на диодах VD11, VD12.

В качестве VT7, VT9, VT13 можно использовать транзисторы типа КТ3102 с любым буквенным индексом. При напряжении питания до ±30 В в качестве VT11, VT16 подойдут транзисторы типа КТ626В. a VT12, VT15 -- КТ646А. Транзисторы VT15, VT16 снабжены небольшими пластинками -- теплоотводами. Для дополнительной термостабилизации диоды VD16, VD17 монтируют вместе с резисторами R33, R34 непосредственно на выводах выходных транзисторов. При использовании в позициях VT11. VT12, VT15, VT16 транзисторов серий КТ850, КТ851 емкость конденсаторов СЮ, С11 можно уменьшить до 150 пф, а С12, С13 -- до 39 пФ. Для повышения устойчивости усилителя желательно включить в базы транзисторов VT10, VT12 (см. рис. 1) и VT10--VT13 (рис. 2) резисторы сопротивлением 50--100 Ом, что позволит уменьшить емкости конденсатеров СЮ--С13 или даже отказаться от них.

При налаживании усилителя (сначала без мощных транзисторов VT17, VT18, см. рис. 2) его включают и, подав сигнал от генератора, убеждаются в работоспособности устройства без нагрузки. Затем, подключив выходные транзисторы, проверяют его под резистивной нагрузкой как с помощью синусоидального сигнала, так и сигнала "меандр" до частоты 20 кГц. Выходной сигнал должен быть чистым, без какого-либо выброса или "звона". Особое внимание следует обратить на форму выходного сигнала при выходе усилителя из перегрузки по напряжению. На синусоидальном сигнале не должно быть никаких признаков даже кратковременного возбуждения.

Параметры усилителя, показанного на рис. 2, можно улучшить, применив в качестве выходных транзисторов более высокочастотные составные транзисторы или отдельные транзисторы с частотой единичного усиления не ниже 20 МГц.

Основные технические характеристики УМЗЧ

Цепи ООС (R5, С6) и С1 отключены;

R= 4 Ом

Коэффициент усиления,

не менее1000

Коэффициент гармоник, % ,

не более, на частоте

1000 Гц 0,5

10 кГц 0,6

20 кГц 0,9

Полоса пропускания, кГц 110

Цепи ООС и ФНЧ (С1) включены; R = 4 Ом

Коэффициент усиления 16

Глубина ООС. дБ36

Коэффициент гармоник, % ,

не более, на частоте

1000 Гц 0,02

10 кГц 0,02

20 кГц 0,03

Номинальнаявыходная мощность, Вт 60

Полоса усиливаемых частот,

малосигнальная, кГц 130

Входное сопротивление, кОм 5

Таблица 1. Импортные аналоги отечественных транзисторов и операционных усилителей.

Номер по схеме

Отечественный элемент

Импортный аналог

Транзисторы

VT1

КТ6117А

2N5551

VT2

КТ6116А

2N5401

VT7

КТ3117А

2N2222

VT8

КТ3108А

2N3250

VT11

КТ9115А

BF423

VT12

КТ940А

BF471

VT17

КТ825А

MJE15029

VT18

КT827A

EL2006G

Диоды

VD1

КС212А

BZX84-C12

VD3

КД522Б

IN4148

VD13

КД208А

IN4007

ОУ

DA1

КР544УД1А

LF411CN

Моделирование УМЗЧ

Подобрав аналоги к отечественным элементам построим схему (рис.3), воспользовавшись программой Elektronics Workbench (EWB) (Multisim 8).

Анализ работы

Прежде чем проводить анализы требуется проверить работоспособность схемы на импортных элементах, т.е. проверить соответствие параметров в полученной схеме.

Проверим усиление на выходе, для этого установим на вход источник синусоидального сигнала AC Voltage со следующими параметрами:

Напряжение- 1.41В

Частота- 20КГц

Сигнал на нагрузке снимем с помощью осциллографа:

Страницы: 1, 2