скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Управляющий модуль устройства проверки автоматических выключателей первичным током скачать рефераты

p align="left">гибкое управление периферией - отключение/включение, подстройка частоты с целью оптимизации энергопотребления;

совмещенное питание для ядра и периферии, функции Brown-out-Detect и Power-on-Reset;

пробуждение процессора из режима Power-down mode с помощью внешнего прерывания или срабатывания функции Brown-out-Detect;

напряжение питания от 3.0 до 3.6В;

память данных объемом до 128 Кб.

Флэш-память необходима для хранения данных, использующихся во время работы устройства, таких как коэффициенты трансформации, режим работы устройства, заданные пользователем установки и другая рабочая информация. Имеет большое количество циклов перезаписи. Часы реального времени необходимы для точного определения времени срабатывания расцепителей, времени возврата, а также для определения длительности замкнутого (разомкнутого) состояния. Все пины микросхемы толерантны к 5В.

Микроконтроллер LPC2148 содержит все узлы, необходимые для автономной работы. Он находит применение в областях, где основным требованием является миниатюризация устройства при его широкой функциональности. LPC2148 является наиболее удовлетворяющим основным критериям выбора: быстродействию, вычислительным возможностям и соотношению цена/качество. Кроме того, разработано большое количество отладочных средств для этого микроконтроллера. Так, к примеру, отладочная плата фирмы Olimex LPC-P2148 стоит около 2000 рублей, а отладчик JTAG-адаптер - от 500 рублей.

Термином JTAG-интерфейс изначально обозначалась совокупность средств и операций, позволяющих проводить тестирование БИС/СБИС без физического доступа к каждому их выводу, так называемое «граничное сканирование» или «периферийное сканирование». Позднее функции интерфейса JTAG были расширены, и он нашел широкое применение для конфигурирования микросхем с программируемой структурой.

Существует несколько типов адаптеров, подключаемых к персональному компьютеру, которые предназначаются для отладки, тестирования и программирования внутренней памяти микроконтроллеров на базе ядра ARM7. Предпочтительней использовать в качестве JTAG-адаптера Segger J-Link, как наиболее быстрое, распространенное и надежное средство отладки. J-Link - устройство в небольшом корпусе, с одной стороны которого расположен USB разъем для подключения к ЭВМ, а с другой - 20-ти штырьковый коннектор. Кроме элементов, осуществляющих электрическое согласование, J-Link содержит микроконтроллер со встроенным USB портом. Наличие процессора позволяет достигнуть высокой скорости работы и удобств, отсутствующих в устройствах аналогичного назначения. Питание J-Link осуществляется от шины USB. Из средств программной разработки, поддерживающих J-Link можно выделить «IAR Embedded Workbench» и «CrossWorks», имеющие встроенную поддержку J-Link.

1.3.2 АЦП

Существует большое разнообразие микросхем АЦП, различающихся скоростью работы, допустимыми диапазонами входного сигнала, величинами погрешностей, уровнями питающих напряжений и другими параметрами.

Точность как аналого-цифрового преобразования зависит, главным образом, от частоты квантования и от числа уровней квантования сигналов. По своей внутренней структуре АЦП делятся на параллельные и последовательные. Параллельные АЦП обычно имеют невысокое число разрядов (6 или 8), но высокое быстродействие (1 - 200 МГц). Такие АЦП отличаются более высокой потребляемой мощностью и более высокой ценой. Применяются они, в основном, в системах, требующих высокой частоты квантования сигнала по времени, например, в системах обработки изображения. Последовательные АЦП по своей структуре значительно проще параллельных, поэтому стоимость их значительно ниже. Последовательные АЦП имеют сравнительно невысокое быстродействие (обычно не более 1 МГц). Число разрядов может достигать 24, но обычно применяются микросхемы с числом разрядов 8, 10, 12, 14, 16.

АЦП также подразделяются по типу вывода цифровой информации. Существуют микросхемы с параллельным выводом информации, когда число цифровых выходов соответствует разрядности. Но есть также микросхемы, выводящие цифровой сигнал по последовательному каналу. В этом случае необходимо два или три вывода для осуществления последовательной передачи независимо от числа разрядов АЦП. Такие АЦП наиболее привлекательны в малогабаритных системах, так как эти микросхемы выпускаются в малогабаритных корпусах с 8 выводами, например LTC1291 фирмы Linear Technology.

АЦП могут отличаться также числом аналоговых входов. Если входов несколько, значит, микросхема имеет встроенный входной аналоговый коммутатор. Управление этим коммутатором производится логической схемой. Обычно такие микросхемы требуют внешнего управления для переключения входов, для чего предусматривается ввод последовательного или параллельного управляющего сигнала снаружи. Примером может служить последовательный 12-разрядный АЦП с 8 входами, выпускаемый в 20-выводном корпусе LTC1296 фирмы Linear Technology.

Аналогово-цифровые преобразователи также отличаются быстродействием и числом разрядов. Обычно микросхемы с большим количеством разрядов имеют невысокое быстродействие, а наиболее быстродействующие микросхемы имеют небольшое число разрядов. Аналогово-цифровой преобразователь должен обеспечить минимальное время измерения сигналов.

Для управляющего модуля выбрана микросхема типа AD7898AR-3. Ее характеристики:

12-битный АЦП с последовательным выходом;

напряжение питания Uп = 5В;

8 контактов;

высокоскоростной последовательный интерфейс;

низкая потребляемая мощность: максимум 22,5 мВатт;

предел входного напряжения +-2,5В;

температура использования -40…+85 °C.

Микросхема AD7898AR-3 отличается высокой скоростью и гибкостью, а также низкой потребляемой мощностью.

1.3.3 Конвертер RS232 <-> USB

Функция микросхем для организации обмена данными заключается в преобразовании сигнала для передачи его по линии связи и последующего приема. Микросхемы этого класса являются связывающим звеном между различными устройствами, каждое из которых имеет собственный процессор.

Обмен может быть организован с использованием параллельной или последовательной передачи данных. Параллельная передача осуществляется обычно со значительно более высокой скоростью, так как данные передаются по нескольким (обычно восьми или шестнадцати) линиям. Последовательная передача данных ведется всего лишь по трем или двум линиям. Поэтому последовательная связь более медленная, но зато имеет более простую физическую организацию.

Конвертер RS232 <-> USB разработан на базе микросхемы FT232BM. Ее изготовитель - компания Future Technology Devices Intl Ltd (FTDI) - специализируется на производстве микросхем сопряжения микропроцессорных устройств с USB. FT232BM - это микросхема второго поколения популярного семейства «USB-UART».

По сравнению с предшествующим поколением (FT8U232AM) микросхемы этого типа имеют ряд преимуществ и дополнительных функций. FT232BM представляет собой преобразователь потока асинхронных последовательных данных с уровнями 3.3В/5В в поток данных USB. В режиме «Bit Bang» микросхема может использоваться для ввода/вывода цифровых логических сигналов без использования дополнительного микроконтроллера. Гибкая архитектура может найти применение в самых разнообразных решениях.

Микросхемы семейства FT232BM - это идеальное решение для модернизации устройств с интерфейса RS232 в USB. Этот кристалл значительно повышает уровень производительности традиционных устройств последовательной передачи данных.

Основные характеристики микросхемы:

выходной интерфейс совместим с логикой 3.3В и 5В;

скорость передачи до 1 Мбод;

потребляемый ток в рабочем режиме 25 мА;

UART предполагает 8 информационных битов, 1/2 стоповых бита;

совместимость с USB 1.1 и USB 2.0;

микросхема выполнена в 32-выводном корпусе;

температурный диапазон 0…+70 °C.

1.3.4 Флэш-память EEPROM

В разработке цифровых устройств как правило часто используется флэш-память, представляющая собой ППЗУ (EEPROM) - программируемое постоянное запоминающее устройство с многократным электрическим стиранием и перезаписью информации. EEPROM в настоящее время вытесняют с рынка многократно программируемые ПЗУ с ультрафиолетовым стиранием (EPROM), так как они значительно удобнее в использовании. Это определяется отсутствием необходимости длительного процесса предварительного стирания информации и возможностью побайтной произвольной записи в любую ячейку памяти. Запись информации в ППЗУ производится с помощью подачи определенных последовательностей электрических сигналов на выводы микросхемы.

Фирмами-производителями цифровых микросхем выпускается немало разнообразных ППЗУ. Микросхемы различаются объемом (от 32 байт до 8 Мбайт и более), разрядностью (обычно количество разрядов данных бывает 4, 8 или 16), способами управления (назначением управляющих сигналов), типами выходных каскадов (обычно ОК или ЗС), быстродействием (задержка может составлять от единиц до сотен наносекунд). Но принцип работы всех микросхем остается одинаковой для всех: имеется шина адреса, на которую нужно подавать код адреса нужной ячейки памяти, имеется шина данных, на которую выдается код, записанный в адресуемой ячейке, и имеются входы управления, которые разрешают или запрещают выдачу информации из адресуемой ячейки на шину данных.

Основные временные характеристики микросхем ППЗУ - задержка выборки адреса памяти (время от установки входного кода адреса до установки выходного кода данных) и задержка выборки микросхемы (время от установки активного разрешающего управляющего сигнала CS до установки выходного кода данных памяти). Задержка выборки микросхемы обычно в несколько раз меньше задержки выборки адреса.

Любые микросхемы ППЗУ легко можно включать так, чтобы уменьшать или увеличивать количество адресных разрядов, то есть уменьшать или увеличивать количество используемых ячеек памяти, что часто требуется при построении схем цифровых устройств.

Для управляющего модуля РЕТОМ-30КА выбрана микросхема AT25640AN-10SU-1.8, производителем которой является фирма «ATMEL Corporation». Микросхема данного типа совместима с последовательным периферийным интерфейсом SPI, что необходимо для нашей разработки. Ниже приведены основные характеристики AT25640AN:

64 К (8192 слов x 8 бит);

32-byte Page Mode (страничный режим);

напряжение питания 2.7В (VCC = 2.7V to 5.5V);

синхронизированный цикл записи 2 мс [5В];

8 контактов;

высокий уровень надежности;

выносливость - 1 миллион циклов записи;

сохранение информации - 100 лет;

температурный диапазон -40…+125 °C.

Микросхема AT25640A оптимальна для использования во многих разработках, где требуется низкое потребление мощности и напряжения.

Данная флэш-память характеризуется высокой емкостью, малым потреблением и большим допустимым количеством циклов перезаписи.

1.3.5 Мультиплексор

Микросхемы аналоговых мультиплексоров имеют обычно один вход и несколько выходов или наоборот. Микросхемы позволяют использовать передачу сигналов в обоих направлениях. Основные комбинации: 8 входов - 1 выход, два канала 4 входа - 1 выход, 16 входов - 1 выход, два канала 8 входов - 1 выход. Микросхемы мультиплексоров обычно имеют защиту аналоговых цепей от перегрузок в виде ограничительных диодов.

Аналоговый мультиплексор реализован микросхемой типа ADG408BR. Ее основные характеристики:

8 входных каналов, 1 выходной канал;

входное сопротивление 100 Ом;

16 контактов;

температурный диапазон -40…+85 °C.

Достоинства этой микросхемы: низкая рассеивающая мощность, низкий уровень входного сопротивления, быстрое переключение.

1.3.6 Дешифратор

Микросхемы дешифраторов различаются входами управления (разрешения/запрета выходных сигналов), а также типом выхода (2С или ОК). Выходные сигналы всех дешифраторов имеют отрицательную полярность. Входы, на которые поступает входной код, часто называют адресными входами.

Для реализации дешифратора в схеме защиты от одновременного включения реле выбрана микросхемы типа 74HCT138D (производитель - компания Philips Semiconductors), которые имеют 3 разряда входного кода и 8 выходов.

1.3.7 Развязка

Довольно часто для защиты устройств используется гальваническая развязка между устройствами и линией связи. В этом случае обычно используется трансформаторный источник вторичного питания для гальванически развязанного блока и оптронные пары для развязки сигнальных цепей. В целом такой блок становится достаточно сложным и требует большого числа дискретных компонентов. Для упрощения построения гальванически развязанного блока целесообразно воспользоваться интегральными микросхемами, в которых уже объединены все составляющие части. Исходя из технического задания на разрабатываемое устройство, выбираем микросхему типа ADUM1402CRW.

Основные характеристики данной микросхемы:

4 канала: 2 прямых канала, 2 обратных;

максимальная скорость передачи информации 100 Мбит/с;

максимальная задержка 32 нс;

изоляция 2.5 кВ;

напряжение питания Uп = 2.7…5.5 В;

ток питания Iмакс = 124 мА;

16 контактов;

температурный диапазон -40…+100 °C.

1.4 Выводы по главе

В теоретической части дипломного проекта рассмотрено измерительное устройство для проверки автоматических выключателей РЕТОМ-30КА, для которого необходимо разработать управляющий модуль: описана структурная схема устройства, рассмотрены его функции и возможности.

Проведен обзор российских и зарубежных аналогов устройства и сравнительный анализ их характеристик. К достоинствам РЕТОМ-30КА можно отнести величину генерируемого тока, контроль наличия апериодической составляющей, синусоидальность подаваемого тока, точность измерений.

Произведен анализ и выбор элементной базы, от которого зависит эффективность, надежность разработки устройства и затраты на его производство. После оценки различных факторов и характеристик были выбраны наиболее подходящие для нашей разработки элементы и, в частности, микроконтроллер типа LPC2148, который является идеальным по быстродействию, вычислительным возможностям и соотношению цена/качество.

2. Структурная схема управляющего модуля

2.1 Состав и назначение блоков структурной схемы

Рассмотрим управляющий модуль регулировочного блока, с помощью которого происходит включение и отключение силовой схемы, измерение параметров и их индикация.

Структурная схема управляющего модуля показана на рисунке 2.1.

Рисунок 2.1 - Структурная схема управляющего модуля

Управляющий модуль устройства РЕТОМ-30КА содержит: микроконтроллер, два релейных коммутатора, мультиплексор, три модуля АЦП, схему защиты от одновременного включения реле, два регистра управления диапазонами, регистр управления схемой защиты, регистр управления клавиатурой, запоминающее устройство EEPROM, буфер, дисплей и несколько блоков, обеспечивающих гальваническую развязку.

С выходов измерителя сигналы поступают на мультиплексор. Мультиплексор выбирает диапазон измерения для точного измерения тока на нижних пределах.

Релейный коммутатор предназначен для выбора одного из источников измеряемого сигнала.

Для предотвращения одновременного включения реле служит схема защиты от одновременного включения реле.

Преобразование поступивших в измерительный канал аналоговых сигналов в цифровые происходит в модуле АЦП.

Гальваничекая развязка необходима для того, чтобы обеспечить отсутствие замкнутой электрической связи между компонентами схемы.

Микроконтроллер осуществляет измерение действующих значений входных сигналов и вывод информации на дисплей, производит управление включением и отключением силовой схемы.

Через регистр управления клавиатурой микроконтроллер осуществляет обслуживание клавиатуры.

Имеется регистр управления диапазонами для нормировки измерений, проведенных в разных диапазонах.

Буфер необходим для преобразования уровня выходного напряжения.

Дисплей представляет собой двустрочный семисегментный индикатор. Индикатор может работать в двух режимах:

1) в режиме измерения;

2) в режиме работы с меню.

В режиме измерения на экране индикатора можно одновременно отобразить только два из измеренных параметров.

В запоминающем устройстве EEPROM хранятся коэффициенты для масштабирования входных сигналов, а также различная служебная информация.

Управление, калибровка, перепрошивка устройства выполняются средствами персонального компьютера. С их помощью также можно составить протокол по снятым характеристикам.

Для подключения к персональному компьютеру используется интерфейс USB. Для преобразования потока асинхронных последовательных данных в поток данных USB предусмотрен конвертер RS232 <-> USB.

2.2 Выводы по главе

Структурная схема дает представления о структуре устройства и назначении его составных компонентов. На основе структурной схемы управляющего модуля будет построена его функциональная схема.

3. Функциональная схема управляющего модуля

3.1 Разработка функциональной схемы

Функциональная схема представлена в приложении А.

Управляющий модуль устройства РЕТОМ-30КА состоит из следующих функциональных узлов: микроконтроллер, релейный коммутатор, мультиплексор, модуль АЦП, схема защиты от одновременного включения реле, регистр управления диапазонами, регистр управления схемой защиты, регистр управления клавиатурой, запоминающее устройство, буфер, дисплей и гальваническая развязка.

Модуль АЦП применяется для сопряжения цифровых устройств с внешними аналоговыми сигналами.

Аналоговый сигнал сначала проходит через прецизионный операционный усилитель, а затем поступает на микросхему АЦП AD7898AR-3. Кроме того, модуль АЦП содержит следующие составляющие: источник опорного напряжения (микросхема типа REF192GS), компаратор общего назначения (микросхема типа LM311M), батарея (микросхема типа MAX660CSA), преобразователь напряжения (микросхема типа AM1P-0505SH30).

С выхода АЦП сигнал поступает на микросхему ADUM1402BRW, реализующую гальваническую развязку между модулем АЦП и микроконтроллером.

Схема защиты от одновременного включения реле включает в себя две микросхемы 74HC138D, которые являются демультиплексорами, и две микросхемы 74HC14D, представляющие собой инвертирующий триггер Шмидта. Инвертирующий триггер Шмидта усиливает сигнал и увеличивает помехозащищенность. Демультиплексор применяется для перекоммутации одного входного сигнала на несколько выходов, то есть для разделения входных сигналов, приходящих в разные моменты времени, на одну входную линию.

Конвертер RS232 <-> USB предусмотрен для подключения к персональному компьютеру. Блок построен на основе микросхемы FT232BM, которая преобразует поток асинхронных последовательных данных с уровнями 3.3В/5В в поток данных USB.

Микроконтроллером аппаратно поддерживаются интерфейсы SPI, I2C.

I2C - двунаправленная асинхронная шина с последовательной передачей данных и возможностью адресации до 128 устройств. Физически шина содержит две сигнальные линии, одна из которых SCL предназначена для передачи тактового сигнала, вторая SDA для обмена данными. Можно отметить малое количество соединительных линий, высокая скорость обмена, простота аппаратной реализации линии связи.

Взаимодействие микроконтроллера с компонентами управляющего модуля осуществляется через интерфейс SPI (Serial Peripheral Interface) - трехпроводный синхронный с раздельными линиями входных и выходных данных. Он применяется для связи микроконтроллеров с периферийными микросхемами и микросхемами памяти. По сравнению с I2C интерфейс SPI обеспечивает более высокую скорость передачи данных, частота синхронизации может достигать 5 МГц (это зависит от подключаемых устройств). При этом на каждый такт синхронизации одновременно может и передаваться, и приниматься очередной бит данных. В основном варианте использования предполагается, что интерфейс соединяет одно ведущее устройство с одним или несколькими ведомыми устройствами.

В интерфейсе используются 3 обязательных сигнала:

SCK (Serial Clock) - синхросигнал, которым ведущее устройство стробирует каждый бит данных;

MOSI (Master Output Slave Input) - выходные данные ведущего устройства и входные данные ведомого устройства;

MISO (Master Input Slave Output) - входные данные ведущего устройства и выходные данные ведомого устройства.

Кроме того, может использоваться сигнал выбора ведомого устройства SS# (Slave Select, или CS# - Chip Select): ведомое устройство должно реагировать на сигналы интерфейса и генерировать выходные данные на линии MISO только при низком уровне этого сигнала; при высоком уровне выход MISO должен переводиться в высокоимпедансное состояние.

С помощью сигналов SS#, раздельно формируемых ведущим устройством для каждого из ведомых устройств, ведущее устройство может выбирать партнером в транзакции одно из ведомых. При этом получается гибридная топология соединений: по сигналам SCK, MOSI и MISO - топология шинная, по SS# - звездообразная (центр - ведущее устройство).

3.2 Выводы по главе

На основе структурной схемы управляющего модуля разработана функциональная схема. В ней более подробно описаны следующие блоки: модуль АЦП, схема защиты от одновременного включения реле, USB-конвертер и гальваническая развязка. Описан интерфейс SPI, через который происходит взаимодействие микроконтроллера с другими блоками управляющего модуля.

Страницы: 1, 2, 3