скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Технологія випробування мікросхеми К155 ЛА7 за категорією К5 скачать рефераты

p align="left">Камера має ручне управління для перевірки і налагодження холодильних агрегатів і нагрівача і автоматичне - для створення і підтримки температурних режимів. Управління камерою і регулювання температури виконується за допомогою блоку управління. Потрібну температуру встановлюють по задатчику температури (ЗТ), який разом з датчиками температури (R1, R2), розміщеними в камері, утворює термочутливий міст. Доки температура в камері не досягне необхідного значення, з мосту на вхід регулятора температури (РТ) поступає сигнал, пропорційний відхиленню температури. Фаза цього сигналу залежить від знаку заданої температури (- або +). З виходу регулятора температури на вхід управляючого пристрою (УП) подається постійна напруга, пропорційна розбалансу мосту. В залежності від знаку напруги сигнал з виходу УП поступає на тиристорний регулятор (ТР), що змінює напругу на нагрівачі, або на пусковому пристрої (ПП), що управляє роботою холодильних машин (М1 і М2). Коли температура в камері досягне необхідного рівня, міст балансується, сигнал на його виході становиться рівним нулю, і нагрівач або холодильні машини вимикаються. Контролюється і записується температура за допомогою врівноваженого мосту (ВМ) КСМ1-002, що працює від датчика температури - терморезистора R3. При порушенні нормального режиму роботи камери (зміна температури, зупинка вентилятора) спрацьовує звукова і світлова сигналізація.

Випробувані вироби закріплюють в спеціальних пристосуваннях. Матеріали, що застосовуються для кріплення малогабаритних виробів, повинні мати велику теплопровідність. Пристосування встановлюють на платі, що розміщена всередині корисного об'єму і має гнізда, з'єднані із штепсельними роз'їмами, що знаходяться зовні камери. З'єднання виконують термостійким екранованим проводом з надійно заземленим екраном. До штепсельних роз'їмів підключають випробувальну і вимірювальну апаратуру.

В процесі експлуатації камер подібного типу слідкують за справністю всіх елементів, звертаючи особливу увагу на справність заземлюючих пристроїв, рівень масла в компресорах і періодично перевіряючи герметичність холодильної системи.

3.2 Випробування на багатократні удари

3.2.1 Механізм дії удару

В механізмі абсолютно твердого тіла удар розглядається як деякий стрибкоподібний процес, тривалість якого безкінечно мала. Під час удару в точці зіткнення тіл виникають великі, але миттєво діючі сили, що призводять до конечної зміни кількості рухів. В реальних системах завжди діють конечні сили в продовж конечного інтервалу часу, та співудар двох тіл, що рухаються, пов'язаний з їх деформацією поблизу точки зіткнення та розповсюдження хвилі стиснення всередині цих тіл. Тривалість удару залежить від багатьох фізичних факторів: пружних характеристик матеріалу співударних тіл, їх форми і розміру, відносної швидкості зближення та ін.

Зміну прискорення в часі називають імпульсом ударного прискорення або ударним імпульсом, а закон зміни прискорення в часі - формою ударного імпульсу. До основних параметрів ударного імпульсу відносять пікове ударне прискорення (перевантаження),тривалість дії ударного прискорення і форму ударного імпульсу. Результат дії удару на виріб (реакція виробу) залежить від його динамічних властивостей - маси, жорсткості та частоти власник коливань.

аm11, am21, am31 - максимальні позитивні прискорення під час удару; am12, am22, am32 - теж саме, після удару; аm23 - максимальне негативне прискорення під час удару; аm14, am24, am34 - теж саме після удару.

Рисунок 3.2 - Криві збудження виробів при ударі

За реакцією ІМ на дію ударного імпульсу розуміють відгук виробу на цю дію. Розрізняють декілька основних видів реакції ІМ, що відповідають балістичному (або квазіамортизаційному), квазірезонансному і статичному (або квазістатичному) режимам збудження.

Характеристики прискорення для виробів з різними періодами Т01 власних коливань наведені на рис.3.2. При Т01>>ф - балістичний режим збудження - максимальне значення аm12 прискорення виробу завжди менше максимального (пікового) значення аn прискорення збудженого ударного імпульсу: аm12<аn (рис.3.2, а). При Т01ф - квазірезонансний режим збудження - аm21>аn (рис.3.2, б). При Т01<<ф спостерігається статичний режим збудження - виріб повторює діючий ударний імпульс, тому аm31=аn (рис.3.2, в). В цьому випадку після дії імпульсу мають місце залишкові коливання власної частоти f0 виробу.

3.2.2 Характеристики режимів випробування

Розрізняють два види випробувань на ударне напруження: на ударну пружність і ударну стійкість. При випробуванні на ударне напруження випробуванні дослідні ІМ піддають впливу або одиночного, або багатократний ударів. В останньому випадку частота слідування ударів повинна бути такою, щоб можна було виконати контроль параметрів ІМ, що перевіряються. Основні характеристики режимів використання ІМ при багатократному впливі ударів - пікове ударне прискорення і загальне число ударів - що задаються у відповідності із ступенем жорсткості випробування (табл.3.1).

Таблиця 3.1 - Основні характеристики режимів випробування

Ступінь жорсткості

Пікове ударне прискорення, g

Загальне число ударів для передбаченого в стандартах і ТВ на вироби вибірки об'ємом

3 і менше

більше 3

I

II

III

IV

15

40

75

150

12000

12000

6000

6000

10000

10000

4000

4000

Форма ударного імпульсу як одна з важливих характеристик, що забезпечує єдність випробувань, повинна регламентуватися з часними технологічними пристроями (ЧТП). Найнебезпечнішим для виробу є трапецеїдальний імпульс, оскільки він має найбільш широку область квазірезонансного збудження і найбільший коефіцієнт динамічності в цій області. На практиці частіше використовують напівсинусоідальний ударний імпульс, формування якого найбільш просте і потребує найменших затрат енергії.

Випробування на ударне навантаження проводять в квазірезонансному режимі збудження. Тривалість дії ударного прискорення ф вибирають в залежності від значення нижньої резонансної частоти f0н виробу.

Якщо вироби мають амортизатори, то при виборі тривалості дії уданого прискорення враховують нижні резонансні частоти самих виробів, а не елементів захисту. В якості параметрів, що перевіряються, вибирають ті, за зміною яких можна судити про ударну стійкість ІМ в цілому (спотворення вихідного сигналу, стабільність характеристик функціонування та ін.).

При розробці програми випробувань напрям впливів ударів встановлюють в залежності від конкретних властивостей випробуваних ІМ. Якщо властивості ІМ невідомі, то випробування проводять в трьох взаємоперпендикулярних напрямках. При цьому рекомендується обирати тривалість ударів, що викликають резонансне збудження випробуваних ІМ.

Ударну міцність оцінюють за цілісністю конструкції. Вироби вважають такими, що витримали випробування на ударну міцність, якщо після випробування вони задовольняють стандартам і програмі випробувань (ПВ) для даного виду випробування.

Випробування на ударну стійкість рекомендують проводити після випробування на ударну міцність. Часто їх поєднують. Відміна від випробування на ударну міцність випробування на ударну стійкість здійснюють під електричним навантаженням, характер і параметри якого встановлюють в ЧТП і ПВ. При цьому контроль параметрів ІМ проводять в процесі удару для перевірки працездатності виробів і виявлення помилкових спрацювань. Вироби вважають тими, що пройшли випробування, якщо в процесі і після нього вони задовольняли вимогам, встановленим в стандартах і ПВ для даного випробування.

3.2.3 Пристрої для випробування

Для випробування ІМ на поодинокі удари служать ударні стенди копрового типу, а на багатократні - стенди кулачного типу, що відтворюють удари напівсинусоідальної форми. В цих стендах використовується принцип вільного падіння з випробуваним виробом на амортизуючі прокладки.

На рис.3.4 наведений пристрій механічного стенду кулачного типу. Стіл 1 представляє собою стальну плиту з пазом для кріплення виробу, на нижній стороні якої є направляючі 4, переміщують у втулках, закріплених в кронштейнах станини. На спеціальних упорах чугуної станини розміщені амортизуючі прокладки 5 для регулювання ударного прискорення, а в нижній частині станини є резонансні амортизатори 8, що поглинають частину енергії удару. Провідний механізм, що складається з кліноременної передачі 2 і електродвигуна 7, встановлений на площадці всередині станини. Натягнення ременя регулюють змінюючи набір шайб, розміщених під електродвигуном. Підйом столу здійснюється за допомогою кулачка 3, що обертається від провідного механізму.

1 - стіл; 2 - кліноременна передача; 3 - кулачок; 4 - направляючі; 5 - амортизуюча прокладка; 6 - станина; 7 - електродвигун; 8 - резинові амортизатори.

Рисунок 3.4 - Схема стенду для випробування ІМ на вплив багатократних ударів

При випробуванні багатократних навантажень ударні стенди повинні забезпечити отримання заданого прискорення не більше ±20%. Ударне навантаження, тривалість і форма ударного імпульсу регулюються в широких межах за допомогою амортизуючих повстяних, фетрових, резинових, пластмасових або комбінованих прокладок. Для формування напівсинусоідального імпульсу тривалістю 0.5…5 мс використовують резину середньої та підвищеної твердості або фетр; для імпульсів тривалістю 0.5 мс може виявитися доцільним використання винипласту, фторопласту та ін. листових матеріалів. В деяких випадках використовують багатошарові прокладки. При цьому між резиновими і можуть бути встановлені металеві прокладки із листового алюмінію або сталі товщиною 1…2 мм. Удари тривалістю 0.1 і менше рекомендується отримувати співударом стальних загартованих поверхонь - плоскої та сферичної. В цьому випадку стіл виконується у вигляді бойка.

Також застосовують електродинамічні і пневматичні ударні стенді. В електродинамічних стендах через котушку збудження рухливої системи пропускають імпульс струму, амплітуда і тривалість якого визначають параметри ударного імпульсу. На пневматичних стійках ударне прискорення отримують при співударі столу із снарядом, що випущений із пневматичної пушки.

3.3 Випробування на вплив лінійного навантаження

Випробування проводять для перевірки працездатності виробів під дією лінійного навантаження і після нього. Випробування відбувається на спеціальних стендах - центрифугах, що створюють в горизонтальній площині радіально направлене прискорення. Частота обертання (хв-1) платформи центрифуги

,

де а - лінійне (відцентрове) прискорення, g; R - відстань від осі обертання до геометричного центру виробу або його центру тяжіння, см.

Випробуваний виріб розміщують на столі центрифуги таким чином, щоб розкид прискорень малогабаритного виробу відносно його центру тяжіння не перевищував ±10% прискорення в центральній точці, а для ІМ з габаритними розмірами більше 100 мм цей розкид може складати від -10 до +30%. Випробування проводять без електричного навантаження. Це пояснюється великими похибками, що вносяться в контролюючий вихідний сигнал при передачі його через струмозйомник центрифуги. Якщо ІМ випробується при електричному навантаженні, то необхідно контролювати такі параметри, за змінами яких можна судити при стійкості до впливу лінійного прискорення виробу в цілому. Тривалість випробування визначається значенням лінійного прискорення. При випробуванні з прискоренням до 500 g тривалість випробування складає 3 хв в кожному напрямку, а при прискоренні більше 500g - 1 хв. Для встановлення заданого прискорення змінюють частоту обертання або відстань R від осі обертання, переміщуючи випробуваний виріб вздовж осі платформи.

1 - кожух; 2 - колектор; 3 - електродвигун; 4 - затискний пристрій; 5 - стіл; 6 - кришка; 7 - вал; 8 - барабан; 9 - електромагніт.

Рисунок 3.5 - Конструкція центрифуги

Основні характеристики центрифуги - максимальне прискорення, вантажопідйомність, число струмопроводів.

Конструкція центрифуги Ц 1/150 показана рис.3.5. Стіл 5 представляє собою диск діаметром 570 мм, закріплений в верхній частині валу 7, на якій насаджені також барабан 8, що виконує роль шківу і гальмівного пристрою, і колектор 2. Вал встановлений на двох підшипниках. Всередині валу проходять 24 проводи, кінці яких під'єднанні до колектору і штепсельним роз'їмом, що розміщений біля затискних пристроїв 4. В останніх кріплять печатні плати з випробувальними виробами. Від кожної печатної плати прокладений джгут із 12 проводів, які через штепсельний роз'їм з'єднані з проводами, що йдуть від колектору. В кожусі 1 над валом є отвір для підключення тахометру. До нижнього валу підключають тахогенератор, що служить датчиком частоти обертання. Ротор центрифуги приводиться до обертання електродвигуном 3 постійного струму, а для його гальмування служить електромагніт 9. живлення на електродвигун подається з пульту управління, а на випробуваний вирів - від блоку живлення через колектор. Доступ до столу центрифуги здійснюється через кришку 6. Колектор також закритий кришкою. Обидві кришки мають блокування. Так як вироби кріпляться завжди на одній і тій самій відстані від центру, прискорення залежить тільки від частоти обертання ротору.

В процесі розгону центрифуги окрім відцентрових сил, що визначають лінійне прискорення, виникають сили інерції, що повідомляють об'єкту випробування дотичні прискорення, які відсутні в реальних умовах експлуатації. Дотичні прискорення, що оказують додаткові впливи на вихідні параметри дослідних ІМ, можуть привести до спотворення результатів випробування. Тому час розгону або гальмування центрифуги повинен відповідати умові

або ,

де R - відстань від осі обертання до контрольної точки (центру тяжіння випробуваного виробу), см; а - лінійне прискорення, g; n - частота обертання платформи центрифуги, хв-1.

Основний елемент центрифуги - слідкуючий привід, що перетворює вхідний сигнал (напругу) двигуна в кутову швидкість валу. Контролюючи частоту n обертання в контрольній точці

Так як радіус вимірюється від центру тяжіння випробуваного виробу, то для виробів більших розмірів і для центрифуги з малим радіусом столу лінійне прискорення значно змінюється упродовж виробу. Ця зміна, обумовлена різністю навантаження між двома точками, що розміщені упродовж радіусу стола центрифуги, є градієнт лінійного прискорення

де R1 і R2 (R2 >R1) - радіуси двох контрольованих точок випробуваного виробу.

Для точного випробування великих виробів стіл центрифуги має бути більшого діаметру, ніж розміри випробуваного виробу.

Пристрій для кріплення виробу повинен бути достатньо жорстким і допускати проведення випробувань в трьох взаємоперпендикулярних напрямках. Центри тяжіння повинні співпадати з центром тяжіння столу.

Для вимірювання частоти обертання найбільше розповсюдження отримали електронні тахометри з генератором постійного і змінного струму, імпульсні і стробоскопічні. Тахометри з генератором постійного струму використовують для вимірювання частоти обертання з точністю ±(1…5)%. Тахометри з генератором змінного струму використовують для підвищення точності вимірювань. Імпульсні і стробоскопічні тахометри служать для вимірювання великих частот обертання.

3.4 Вплив підвищеної вологості

3.4.1 Процес випробування

Випробування проводять для встановлення вологостійкості ІМ. Розрізняють два види випробувань: тривале і прискорене. Тривале випробування здійснюють з метою визначення спроможності виробів зберігати свої параметри при тривалому впливі вологості і після його закінчення; прискорене випробування - с метою оперативного виявлення грубих технологічних дефектів в серійному виробництві і дефектів, які могли виникнути в попередніх випробуваннях.

Обидва види випробувань можуть бути проведені в циклічному (з конденсацією вологи) і безперервному (без конденсації вологи) режимах. Конкретний режим випробування встановлюють в залежності від зазначення і умов експлуатації ІМ. Циклічний режим випробування характеризується впливом підвищеної вологості при циклічному вимірюванні температури повітря в камері. Зазвичай його використовують для випробування виробів усіх класів, що не мають ущільненого кожуху, які повинні зберігати працездатність в умовах роси. При випробуванні на вологостійкість в циклічному режимі вироби піддають впливу циклів, тривалість кожного з яких складає 24 години. Число циклів встановлюють в залежності від ступеня жорсткості випробування, визначуваною конструкцією і зазначенням випробуваних приладів. Кожен цикл можна поділити на три етапи (рис.3.6). На першому температура в камері поступово підвищують до верхнього значення, вказаного в НТД. Рекомендована температура прискорених випробувань (55±2)0С, відносна вологість не менше 95%, за виключенням останніх 15 хв (не менше 90%).

Рисунок 3.5 - Етапи зміни відносної вологості ж і температури t оточуючого середовища в циклічному режимі прискореного випробування виробів: год - час, в продовж якого не допускається конденсація вологи в виробах; I - кінець підйому температури; II - початок падіння температури

Підвищення температури і вологості необхідно проводити достатньо швидко, щоб забезпечити конденсацію вологи на виробах. Для виникнення конденсації температура поверхні зразків повинна бути нижче точки роси повітря в камері.

На другому етапі випробування підтримують верхнє значення температури в продовж 12 год. ± 30 хв з початку циклу. Відносна вологість повинна складати (93±3)% за виключенням перших 15 хв, коли її значення повинно знаходитися між 90 і 100%. На третьому етапі випробування температуру в камері знижують до (25±3)0С за час від 3 до 6 год. Відносна вологість при цьому повинна бути не менше 95%, за виключенням перших 15 хв (не менше 90%). Допускається замість природного охолодження виробу в камері, де проводились випробування при верхньому значенні температури, переносити вироби із цієї камери в камеру із зниженою температурою, причому час переносу не повинен перевищувати 15 хв.

При зниженні температури в камері волога може проникати всередину виробів через різні мікроканали в зварних і паяних швах. Фізичний механізм цього явища полягає в наступному. При зниженні температури в камері повітря у внутрішній порожнині випробуваного виробу охолоджується і тиск в ній зменшується. Через перепад тисків в оточуючому середовищі і всередині порожнини волога дифундує по капілярам всередину порожнини корпусу. Тому випробування на вологостійкість в циклічному режимі може бути рекомендовано для виробів, що мають вільні внутрішні порожнини.

В безперервному режимі випробування не передбачена конденсація вологи на виробах, тому безперервне випробування проводять при постійних значеннях температури і вологості в камері. Час витримки при заданій температурі визначається часом досягнення теплової рівноваги. Потім відносну вологу повітря в камері підвищують до (95±3)% і далі підтримують це значення (як і значення температури) постійним в продовж всього часу випробування.

Методики проведення прискореного випробування виробів в безперервному і циклічному режимах аналогічні. Тривалість випробувань встановлюється в залежності від ступеня жорсткості. По закінченню прискореного випробування вироби витримують в нормальних умовах впродовж 1…2 год., тоді як по закінченню тривалого випробування - не менше 24 год.

Випробування при електричному навантаженні передбачається в тому випадку, якщо вплив вологи в умовах експлуатації виробів під напругою може призвести до електрохімічної корозії. В якості навантаження при такому випробуванні служить напруга, що забезпечує мінімальне виділення тепла в випробуваних виробах. В більшості випадків випробування на вологостійкість проводять без електричного навантаження. Параметри виробів вимірюють в кінці випробування (при циклічному режимі - на останньому циклі в кінці останньої години витримки при верхньому значенні температури), не виймаючи їх з камери вологості.

3.4.2 Камери тепла і вологи

Камери тепла і вологи, що використовуються для проведення випробування на вологостійкість, відрізняються габаритними розмірами, точністю підтримки режиму, діапазоном характеристик. Так, камери, призначені для відтворення циклічного режиму випробування, повинні забезпечувати циклічну зміну температури в межах заштрихованих областей на рис.3.5. камери, призначені для відтворення безперервного режиму, повинні підтримувати режим випробування в робочому об'ємі в межах ±3% нормованого значення вологості і ±20С нормованого значення температури. Враховуючи, що незначні зміни температури супроводжуються значними коливаннями відносної вологості, слід застосовувати камери з точністю регулювання температури за сухим термометром ±40С, а за вологим - від +0.4 до -0.20С. Зниження температури більш ніж на 0.50С при високій відносній вологості і підвищеній температурі може призвести до випадіння роси, що є недоліком камери.

Якщо на стелі і на стінках камери утворюються краплі конденсованої вологи, то вони не повинні потрапляти на дослідні вироби. Для цього над виробами слід встановлювати двоскатний навіс із некорозійного матеріалу, а самі вироби розміщати в камері таким чином, щоб краплі конденсованої води не потрапляли з одних виробів на інші. Стінки камери і деталі, що знаходяться всередині неї, повинні бути стійкі до корозійного впливу вологи, що утворюється в камері. Камера КТВ-0.4-155, схема якої зображена на рис.3.6 може працювати в ручному і автоматичному режимах.

1 - «сухий» термометр опору; 2 - «мокрий» термометр опору; 3 - чохол з батисту; 4, 10 - вентилятори; 5, 6, 18, 25 - платинові термометри опору; 7, 15 - нагрівачі; 8 - змійовик; 9 - заслінка; 11, 12, 19 - соленоїдні вентилі; 13, 14 - датчики нижнього та верхнього рівнів води; 16 - паровий зволожувач; 17, 20, 27, 28 - електронні мости; 21 - корисний об'єм камери; 22 - простір між стінками камери для циркуляції повітря; 23 - паропровід; 24 - склянка підпитки; 26 - резервуар з дистильованою водою.

Рисунок 3.6 - Схема камери тепла і вологи КТВ-0.4-155

Позитивна температура в камері утворюється в результаті теплообміну між повітрям, що знаходиться в корисному об'ємі 21, і нагрітим повітрям, що циркулює в просторі 22 між її стінками. Для примусової циркуляції повітря служить вентилятор 10, а для кращого теплообміну і вирівнювання температури шляхом перемішування повітря в корисному об'ємі камери - вентилятор 4.

Температура повітря регулюється електронним мостом 20, датчиками температури, в якості яких застосовують платинові термометри опору 6 і 25, встановлені відповідно поблизу від нагрівача 7 і в протилежному куті камери. Регулювання відбувається за середнім значенням температур в цих точках.

Повітря, що циркулює муж стінками камери, нагрівається нагрівачем 7. Для охолодження повітря (при перевищенні заданої температури) слугують заслінка 9 і змійовик 8, через який при відкриванні соленоїдного вентиля 11 попускається вода. Подавання напруги на нагрівач, соленоїдний вентиль і електромагніт, що керує заслінкою, виконується електронним мостом 20 через виконавчі реле і контактори. Контроль і безперервний запис температури в камері виконується електронним мостом 28, датчиком температури для якого є платиновий термометр опору 5. За його показниками вмикаються світлова і звукова сигналізація при перевищенні заданої температури, наприклад, у випадку безперервності системи управління нагрівачами або охолодженням.

Для створення необхідної відносної вологості використовується паровий зволожувач 16, представляє собою бак з водою, що нагрівається нагрівачем 15. Рівень води в зволожувачі регулюється соленоїдним вентилем 12, що управляється датчиком нижнього 13 і верхнього 14 рівнів, а температура води - електронним мостом 17 за допомогою термометра опору 18. Відносна вологість регулюється електронним мостом 27, в плечі якого увімкнені датчики - термометри опору: «сухий» 1 і «мокрий» 2. На термометр 2 надітий чохол 3 із батисту, який змочується дистильованою водою, для чого його нижній кінець опущений в склянку підпитки 24, з'єднаний трубкою з резервуаром 26, в якому знаходиться дистильована вода. Батист повинен бути завжди чистим, м'яким і вологим.

Камера може працювати в режимах тепла і підвищеної відносної вологості. В режимі підвищеної відносної вологості на електронному мості 27 встановлюють стрілку задатчика на потрібну відносну вологість, а стрілку задатчика електронного мосту 17 - на відмітку 100…1100С. Коли камера вийде на заданий режим температури, вмикають перемикач «подача пари». Із зволожувача 16 пара поступає в камеру по трубопроводу 23 через соленоїдний вентиль 19, що керується електронним мостом 27. В результаті камера виходить на потрібний режим відносної вологості.

Для вимірювання електронних параметрів дослідних ІМ в камері передбачені вводи, розраховані на напругу до 5000В. Крім того, для подачі, напруг живлення в камері є отвори діаметром 80 мм, через які пропускають кабелі від вимірювальної апаратури. Перед тим на кабелі надівають пробки з теплоізолюючого матеріалу з малим волого поглинанням (пінопласт, фторопласт), які потім щільно вставляють в отвори. Щілини між кабелями і пробками і між пробками і отворами в камері заливають герметиком.

Для вимірювання вологи повітря і газів використовують гігрометри. Найбільш розповсюджені - психрометри. Принцип їх дії оснований на залежності вологи повітря від психометричної різниці. Психрометри застосовують для вимірювання вологи в широкому діапазоні температур (10…2000С). Вони дозволяють проводити градуювання не за вологістю, а за температурою, що підвищує точність вимірювань.

IV. ВИПРОБУВАННЯ МІКРОСХЕМИ ПРИ СТУПЕНІ ЖОРСТКОСТІ I

Багатократні удари

· Пікове ударне прискорення g = 15

· Загальне число ударів для передбаченої в стандартах на вирів виборки об'ємом: 3 і менше - 12000; більш 3 - 10000.

Лінійне прискорення

· Лінійне прискорення g = 10

Підвищення температури

· Температура - 400С

Вологостійкість

· Відносна вологість (верхнє значення) - 80%

· Температура випробування - 250С

· Наявність конденсації вологи - відсутня

ВИСНОВКИ

Інтегральні мікросхеми серії 155 - це багатофункціональні цифрові матриці, виконані за напівпровідниковою технологією на компліментарних МОН - транзисторах. Мікросхеми призначені для роботи в електронній апаратурі спеціального призначення.

Випробування на зміни температури середовища, на підвищення вологості, на багатократні удари і на лінійне прискорення направлені на перевірку працездатності під час випробування та після нього. А також за допомогою випробувань на зміни температури і на багатократні удари перевіряють ІМ на збереження їх зовнішнього вигляду при проведенні випробування та після нього.

При проведенні цих випробувань використовують спеціальні камери тепла і холоду, камери тепла і вологи, стенди для випробування на багатократні удари і конструкція центрифуги.

ВИКОРИСТАНА ЛІТЕРАТУРА

1. Глудкін О.П. Методи та пристрої випробувань РЕС і ЕВС. М., 1991р. - 336стр.

2. Готра З.Ю., Миколаїв І.М. Контроль якості і надійності мікросхем. М., 1989р. - 168стр.

3. Довідник. Цифрові та аналогові інтегральні мікросхеми. Під ред. Якубовського С.В. М., 1989р. - 496стр.

4. Аронов В.Л., Федотов Я.А. Випробування та дослідження напівпровідникових приладів. М., 1975р. - 325стр.

5. Терещук Р.М., Терещук К.М., Седов С.А. Напівпровідникові прийомопідсилювальні пристрої. Довідник. Київ. 1988р. - 695стр.

6. Глудкін О.П., Черняєв В.Н. Технологія випробування мікроелементів ріоелектронної апаратури і інтегральних мікросхем. М., 1980р. - 360стр.

7. Андерман Д.И., Воробйов Б.А. Методи та засоби випробувань РЕА. Томськ, 1986р. - 102стр.

8. Випробувальна техніка. Під ред. Клюєва В.В. М., 1982р. - 528стр.

9. Інтегральні мікросхеми і зарубіжні аналоги. Довідник. Під ред. Нефьодова В. М., 1998р. - 610стр.

10. Вітчизняні мікросхеми та їх зарубіжні аналоги. Довідник. Під ред. Перельман Б.Л., Шевельов В.Л. М., 1998р. - 376стр.

11. http://www.asc-development.ru/spravochnik-long-79.html

12. http://kazus.ru/guide/chips/la7.html

13. http://site-mirrors.icf.bofh.ru/dsheets/ic/155/la7.html

14. http://www.izme.ru/dsheets/ic/155/la7.html

Страницы: 1, 2, 3