скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Технология радиоэлектронных устройств и автоматизация производства скачать рефераты

Технология радиоэлектронных устройств и автоматизация производства

Министерство образования

Учреждение образования "БГУИР"

Кафедра конструирования

КОНТРОЛЬНАЯ РАБОТА

по дисциплине

"Технология радиоэлектронных устройств и автоматизация производства"

вариант № 10

Выполнила Котова

студентка гр. 05-Р

номер зачетной книжки: 657487

Проверил Хмыль Г.П.

зав.кафедрой конструирования

2008г.

1. Выберите конструкцию первичной сборочной единицы, чертеж которой приложите, и приведите примеры вычисления технологических относительных показателей технологичности конструкции этой сборочной единицы.

Технологичность ? это совокупность свойств конструкции, которые проявляются в оптимальных затратах труда, средств, материалов и времени при изготовлении, эксплуатации и ремонте изделия. [1, стр.37]

В качестве конструкции сборочной единицы, для которой будем производить вычисления технологических относительных показателей технологичности конструкции этой сборочной единицы, выбираем печатную плату стробоскопического прибора, сборочный чертеж и спецификация которого представлены в приложении.

Согласно ОСТ 4ГО.091.219-81, все блоки по технологичности делятся на четыре основные группы: электронные, радиотехнические, электромеханические и коммутационные. Для каждого типа блоков из общего состава определяется семь показателей технологичности, оказывающих наибольшее влияние, каждый из которых имеет свою весовую характеристику , определяемую в зависимости от порядкового номера частного показателя и рассчитываемую по формуле:

, (1.1)

где q ? порядковый номер ранжированной последовательности частных показателей. [1, стр.39]

Комплексный показатель технологичности находится в пределах 0<K?1 и определяетсяпо формуле:

(1.2)

Стробоскопический прибор относится к радиотехническим устройствам. Показатели технологичности стробоскопа определим по методике, изложенной в [1, стр.39-42].

Определяем коэффициент автоматизации и механизации монтажа по формуле:

, (1.3)

где ? количество монтажных соединений изделий электронной техники (ИЭТ), которые предусматривается осуществить автоматизированным или механизированным способом. Для блоков на печатной плате (ПП) механизация относится к установке ИЭТ и последующей пайке волной припоя. [1, стр.39-40] Для печатной платы стробоскопа атоматизированным способом устанавливаются все ЭРЭ за исключением светодиодов. Таким образом

? общее количество монтажных соединений, для разъемов, реле, микросхем и ЭРЭ определяется по количеству выводов (для печатной платы стробоскопа ).

Определяем коэффициент автоматизации и механизации подготовки ИЭТ к монтажу по формуле:

, (1.4)

где ? количество ИЭТ, шт., подготовка выводов которых осуществляется с помощью полуавтоматов и автоматов; в их число включаются ИЭТ, не требующие специальной подготовки (патроны, реле, разъемы и т. д.). Для печатной платы стробоскопа количество ИЭТ, подготовка выводов которых осуществляется с помощью полуавтоматов и автоматов составляет шт.

? общее число ИЭТ, шт., которые должны подготавливаться к монтажу в соответствии с требованиями КД [1, стр.40]. Для печатной платы стробоскопа шт.

Таким образом:

Определяем коэффициент освоенности деталей и сборочных единиц (ДСЕ) по формуле:

, (1.5)

где ? количество типоразмеров заимствованных ДСЕ, ранее освоенных на предприятии. Для печатной платы стробоскопа .

? общее количество типоразмеров ДСЕ [1, стр.40]. Для печатной платы стробоскопа .

Определяем коэффициент применения микросхем и микросборок по формуле:

, (1.6)

где ? количество микросхем и микросборок, примененных в изделии. Для печатной платы стробоскопа .

? общее количество ЭРЭ в изделии. Для печатной платы стробоскопа .

Определяем коэффициент повторяемости печатных плат по формуле:

, (1.7)

где ? число типоразмеров печатных плат в изделии. Для печатной платы стробоскопа .

? общее печатных плат в изделии [1, стр.41]. Для печатной платы стробоскопа .

Таким образом:

Определяем коэффициент применения типовых ТП по формуле:

, (1.8)

где , ? число деталей и сборочных единиц, изготавливаемых с применением типовых и групповых ТП. Для печатной платы стробоскопа , .

, ? общее число деталей и сборочных единиц, кроме крепежа [1, стр.40]. Для печатной платы стробоскопа , .

Определяем коэффициент автоматизации и механизации регулировки и контроля по формуле:

, (1.9)

где ? количество операций контроля и настройки, которые можно осуществить автоматизированным или механизированным способом.

? общее количество операций контроля и настройки.

В рассматриваемой сборочной единице стробоскопического прибора операции контроля напряжения питания и выходного контроля осуществляется автоматизированным методом. Операция регулировки длительности управляющих импульсов осуществляется вручную, путём подбора конденсатора С4. Операция регулировки яркости свечения светодиодов также осуществляется вручную путём подбора сопротивления резистора R6. Таким образом, для печатной платы стробоскопа , .

По формуле (1.2) с учетом значений весовых характеристик, взятых из таблицы 1.11 [1, стр.40] определяем значение комплексного показателя технологичности:

На основании результатов расчетов можно сделать вывод о том, что конструкция печатной платы стробоскопического прибора технологична (для установившегося серийного производства радиотехнических устройств нормативное значение комплексного показателя технологичности должно находиться в пределах 0,75…0,85 [1, стр.42] ).

2. Систематические и случайные погрешности. Покажите на примерах способы определения тех и других

Производственные погрешности выходных параметров изделий следует рассматривать как следствие влияния нестабильности технологических процессов изготовления деталей, электрорадиоэлементов, а также технологических операций сборки и монтажа, герметизации, термотренировки и др. Под производственными погрешностями понимают отклонения параметров изделий от номинальных данных, указанных в ТУ на изделие.

Производственные погрешности подразделяются на систематические, которые вызываются детерминированными причинами и могут быть постоянными во времени или изменяться в пределах партии по определенному закону, и случайные, изменение величины и знака которых носит статистический характер. Систематические погрешности, вызываются следующими основными причинами: 1) методическими, которые возникают из-за ограниченных возможностей метода изготовления детали или контроля ее параметров, замены точных формул приближенными при технологических расчетах; 2) неточностью изготовления оснастки и рабочего инструмента; 3) деформацией и износом оборудования, оснастки и инструмента; 4) температурными воздействиями на деталь или сборочную единицу в зоне обработки .

Случайные производственные погрешности определяются: 1) неоднородностью сырья и отклонениями параметров комплектующих изделий (резисторов, конденсаторов, транзисторов, ИС и др.); 2) колебаниями технологического режима обработки; 3) субъективными данными рабочих и т. д.

Как правило, в технологическом процессе изготовления изделий действует совокупность частных случайных погрешностей. В том случае, если: число случайных факторов и параметры вызванных ими частных погрешностей не изменяются во времени; среди частных погрешностей нет доминирующих, т. е. все случайные факторы по своему влиянию на общую погрешность составляют величины одного порядка; все случайные факторы взаимно независимы, что имеет место при автоматически работающем оборудовании, погрешности подчиняются нормальному закону распределения Гаусса:

, (2.1)

где у(х) -- плотность распределения;

х -- отклонение от центра группирования;

-- среднеквадратичное отклонение.

Параметрами нормального закона распределения являются: математическое ожидание, среднеквадратичное отклонение, половина поля допуска, поле рассеяния.

Математическое ожидание случайной величины для дискретных чисел:

, (2.2)

где k -- число интервалов ряда распределения;

-- частота появления значений.

Для отображения дискретных изменений значений параметра х строится гистограмма и полигон распределения. Для этого по оси абсцисс откладывают отрезки, соответствующие ширине интервала с, а по оси ординат -- частоту , т.е. число значений, попавших в данный интервал. Обычно принимают, что число интервалов:

, (2.3)

где N -- число значений,

А ширина интервала:

, (2.4)

где , ? соответственно минимальное и максимальное значения параметра.

Для непрерывных случайных чисел математическое ожидание:

, (2.5)

Среднеквадратичное отклонение:

для дискретных чисел:

(2.6)

для непрерывных чисел:

(2.7)

Половина поля допуска на параметр . Полное поле рассеяния при уровне вероятности 0,9973:

(2.8)

Отношение среднеквадратичного отклонения к математическому ожиданию, выраженное в процентах, есть коэффициент вариации:

(2.9)

Будучи безразмерным, он удобен для сравнения.

Для обеспечения заданного допуска в условиях производства необходимо, чтобы поле рассеяния производственных погрешностей не выходило за рамки поля допуска. Отсюда следует основное требование к настройке технологического оборудования:

(2.10)

Настроенность технологического процесса определяют с помощью коэффициента технологической точности Т и коэффициента смещения от середины поля допуска Е:

, (2.11)

, (2.12)

где , -- номинальное значение параметра и половина поля допуска по ТУ.

Технологический процесс считается настроенным при Т>0,95 и Е<0,05, в этом случае брак не превысит 1 %. В электронике традиционная воспроизводимость на уровне допуска уже не удовлетворяет современным требованиям, т. е. область дефектности 0,27 % означает 2700 бракованных приборов на 1 млн. единиц продукции. Согласно стандарту по обеспечению качества Международной организации по стандартизации -- ИСО 9000, воспроизводимость рекомендуется между границами , это 0,002 дефекта на 1 млн. единиц изделий.

Нормальному закону распределения в производстве ИМС подчиняются процессы нанесения резистивных и диэлектрических слоев однотипных МОП-структур, толщина фоторезиста, наносимого ценрифугированием на партию подложек, и др.

Рассмотрим пример определения случайной погрешности изготовления тонкопленочного резистора, которая подчиняется нормальному закону распределения Гаусса.

В результате изготовления партии тонкопленочных резисторов объемом 50 штук номиналом 100 Ом и последующем контроле сопротивления резисторов получили следующие результаты:

17 штук 100 Ом,

8 штук 100,01 Ом,

9 штук 99,99 Ом,

9 штук 100,02 Ом,

7 штук 99,98 Ом.

Значение половины поля допуска по ТУ принимаем равным 0,25.

Значение сопротивления резисторов ? величина дискретная. Поэтому определяем математическое ожидание случайной величины (сопротивления) по формуле (2.2):

Определим среднеквадратичное отклонение:

Половина поля допуска на параметр

.

Полное поле рассеяния при уровне вероятности 0,9973:

Вычислив коэффициент смещения от середины поля допуска Е определим настроенность технологического процесса.

Таким образом, можно сделать вывод, что технологический процесс изготовления тонкопленочных резисторов можно считать настроенным.

При резко доминирующей систематической погрешности, которая равномерно изменяется во времени (например, износ инструмента), для описания погрешностей применяют равновероятностный закон, который имеет вид:

(2.13)

где а, b -- границы изменения значений систематической погрешности. Математическое ожидание в этом случае:

(2.14)

Дисперсия

(2.15)

Полное поле рассеяния погрешности

(2.16)

Для борьбы с систематическими погрешностями, необходимо вносить поправки в технологический процесс изготовления деталей или изделий электронной техники. Например, известно, что после травления партии из десяти печатных плат в растворе хлорного железа, при каждом последующем травлении аналогичной по объему партии печатных плат (с соблюдением времени травления) ширина печатных проводников увеличивается на 0,2 мкм. Это и есть систематическая погрешность. В данном случае бороться с ней можно двумя способами. Во-первых можно внести поправку к времени операции каждого последующего травления. Во-вторых можно для каждой новой партии печатных плат использовать новый раствор хлорного железа с одинаковой концентрацией.

Если распределение производственных погрешностей значительно отличается от гауссовского, то оно описывается обобщенным законом типа А:

, (2.17)

где у(х) -- плотность распределения, нормального закона;

r3, r4 -- основные моменты 3-го и 4-го порядка;

уIII (х), yIV (х) -- производные 3-го и 4-го порядка.

Обобщенный закон распределения типа А наряду со средним значением М(х), среднеквадратичным отклонением характеризуется мерой крутости и мерой косости :

(2.18)

(2.19)

Для обобщенного закона типа А:

(2.20)

где t -- безразмерная дробь, которая определяется по таблицам математической статистики в зависимости от значения и знака эксцесса .

Обобщенный закон типа А наиболее часто встречается в производстве гибридных пленочных ИМС. Так, погрешности параметров тонкопленочных резисторов и конденсаторов, измеренные за сравнительно большой период их производства, подчиняются этому закону. Примером может служить также смешивание изделий из разных партий, изменение настройки оборудования в технологическом процессе. [1, стр.47]

3. Герметизация изделий. Схемы ТП герметизации и контроль качества герметизации

Электронная аппаратура эксплуатируется в различных климатических условиях и на надежность ее работы влияют температура окружающей среды, влага, пыль, биологическая среда, радиация и другие факторы. Под действием температуры происходит изменение физических параметров материалов деталей, их старение и ухудшение эксплуатационных свойств. Биологическая среда содержит микроорганизмы, в частности плесневые грибки и бактерии, выделяющие в продуктах обмена различные кислоты, которые вызывают разложение органических материалов. Пыль из окружающей атмосферы, оседая на поверхности материалов, адсорбирует влагу, увеличивает поверхностную электропроводность материалов, ускоряет коррозию металлических покрытий, способствует образованию плесени. [1, стр.315]. Поэтому для защиты РЭА от внешних климатических воздействий применяют герметизацию.

Гермитизация ? это совокупность работ по обеспечению работоспособности электронной аппаратуры в процессе ее производства, хранения и последующей эксплуатации. Герметизация может быть поверхностной (пассивация, оксидирование, герметизация стеклянными покрытиями, пропитка, обволакивание, гидрофобизация, герметизация лакокрасочными покрытиями) и объемной (заливка компаундами, герметизация вакуумно-плотными корпусами, герметизация литьевым прессованием ). [1, стр.316].

Страницы: 1, 2