скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Технологические процессы микросборки плат скачать рефераты

p align="left">Рисунок 6 - Схема движения зарядов в (а) диодной и (б) магнетронной системах

Основными достоинствами этого метода осаждения металлов, полупроводников и диэлектриков являются высокая скорость напыления пленок с хорошей адгезией с подложками и минимальными загрязнениями фоновыми примесями.

Метод ионно-термического испарения - это комбинация термически стимулированного испарения вещества и ионного распыления, реализуемая в нескольких вариантах:

1) резистивное или электронно-лучевое испарение вещества с последующей ионизацией его паров в плазме рабочего газа;

2) испарение вещества разогревом в ВЧ - поле с одновременной высокочастотной ионизацией его паров.

В обеих схемах движение ионов испаряемого вещества к подложке и осаждение на ней обусловлены действием электрического поля между испарителем и подложкой. В зависимости от состава осаждаемых слоев, который можем быть достаточно сложным (например нитриды, карбиды и др.), их структуры и степени адгезионной связи с подложкой, к последней может прикладываться потенциал до 10 кВ. Наличие электрического поля высокой напряженности во время напыления позволяет осуществлять процесс с большими скоростями без нагрева подложек до высоких температур.

В заключение необходимо отметить, что универсальных методов осаждения тонких пленок для любых комбинаций материалов пленки и подложки с различными физико-химическими свойствами на сегодня не существует. Конкретный метод осаждения должен выбираться и отрабатываться по режимам и условиям проведения для данного типа микроэлектронного устройства в соответствии с его функциональным назначением. Выбор того или иного способа осаждения определяется заранее на этапах проектирования и моделирования технологии изготовления устройств с необходимым выполнением требований по химическому составу, чистоте, структуре, стехиометрии, морфологии поверхности и физическим свойствам пленок.

3.4 Методы определения толщины плёнок

Методы определения толщины пленок весьма разнообразны. Гравиметрические методы (микровзвешивание, метод кварцевого резонатора) основаны на измерении масс тонкопленочных покрытий, по которым затем рассчитываются толщины. Оптические методы основаны на интерференции, поскольку толщины пленок по порядку величины близки к длинам волн оптического излучения. Из других оптических методов важное значение в технологии микроэлектронных приборов приобрела так называемая эллипсо-метрия. Используются также электрические методы (в основном контроль электрического сопротивления для проводящих пленок и емкости для диэлектрических) и ряд других.

Свойства тонких пленок очень чувствительны к технологии их изготовления. Пленки, имеющие одинаковую толщину, в зависимости от условий их получения могут иметь совершенно различные удельные сопротивления, температурные коэффициенты сопротивления, диэлектрические потери, коэффициенты поглощения света и т. п. Поэтому в технологии ИС часто более важно не измерение толщины пленки после ее получения, а возможность управлять толщиной в процессе нанесения.

3.4.1 Метод кварцевого вибратора

Основан на измерение отклонений резонансной частоты пьезоэлектрического кварцевого вибратора. Отклонение обусловлено изменением массы кварцевой пластины при напылении на неё тонкой плёнки. Пьезоэлектрические свойства пластин кварца в первую очередь определяются кристаллографической ориентацией срезов по отношению к главным осям монокристалла. Все величины фигурирующие в формуле определения толщины плёнки являются известными параметрами кварцевой пластины и определены с некоторой погрешностью.

3.4.2 Резистивный и ёмкостный методы

Эти методы контроля толщины плёнок основаны либо на измерении сопротивления (для плёнок проводящих материалов) либо ёмкости (для плёнок диэлектрических материалов). Данный метод можно применять непосредственно в момент проведения процесса напыления. Для измерения толщины плёнки в рабочее пространство установки напыления рядом с рабочей подложкой устанавливают контрольную непроводящую подложку на края которой заранее нанесены проводящие контакты. Эта пластина включается в плечо мостовой схемы. По дисбалансу мостовой системы определяют процесс роста плёнки.

Недостатком метода является отсутствие точных данных об удельном сопротивлении плёнки, которое может значительно отличаться от удельного сопротивления объёмного образца. Поэтому этот метод удобно использовать в тонкоплёночной технологии, когда необходимо измерять не толщину плёнки, а её удельное сопротивление.

3.4.3 Метод эллипсометрии

Метод основан на изменении поляризации света при отражении от тонкой прозрачной поверхности. При освещении подложки линейно-поляризационным светом составляющие излучения отражаются по-разному, в результате чего свет получается эллептически поляризованным. Измерив эллептичность отражённой волны, можно определить свойства плёнки.

3.4.4 Ионизация молекулярного потока

Принцип действия приборов для измерения скорости осаждения пленок основан на частичной ионизации паров напыляемого вещества и измерения полученного тока, пропорционального плотности молекулярного потока, проходящего через рабочий объем датчика. Для разделения молекулярного потока и остаточных газов, используется модуляция молекулярного потока. В измерительном приборе переменная составляющая ионного тока датчика, пропорциональная скорости осаждения испаряемого вещества, выделяется, усиливается, детектируется и подается на стрелочный индикатор, показания которого пропорциональны скорости осаждения, и на цифровой интегратор, фиксирующий толщину осажденной пленки.

4. Практическая часть

4.1 Технологические процессы напыления тонких плёнок

Классификация применяемых технологических процессов

1.1 Получение резистивных высокоомных слоёв из порошка сплава РС-3710 методом взрывного испарения и методом ионно-плазменнного распыления мишени сплава РС-3710 в вакууме.

1.2 Получение резистивных низкоомных слоёв хрома марки ЭРХ методом термического испарения в вакууме.

1.3 Получение резистивных низкоомных слоёв методом ионно-плазменного распыления мишени сплава МНКВ в вакууме.

1.4 Получение резистивных низкоомных слоёв нихрома марки Х20Н80 методом термического испарения в вакууме.

1.5 Получение проводящих слоёв меди с адгезионнным подслоем хрома методом термического испарения в вакууме.

4.2 Материалы, используемые для напыления резистивных плёнок

Материалы, используемые для напыления резистивных плёнок, приведены в таблице 1.

Таблица 1- Материалы, используемые для напыления резистивных плёнок

Наименование материала

ГОСТ, ОСТ, ТУ

Документы, разрешающие применение материала

1 Сплав РС-3710 (порошок)

ГОСТ 22025

РД 107.460084.200

2 Сплав РС-3710 (мишень)

ЕТО 032.547 ТУ

ОСТ 4.054.074

3 Хром электролитический рафинированный марки ЭРХ

ТУ 14-5-76

ОСТ ИГО.0140.224

4 Сплав МНКВ (мишень)

АУЭ 0.021.000 ТУ

РД 107.460084.200

5 Нихром Х20Н80

ГОСТ 12766,1

ОСТ 107.750878.001

Материалы, используемые для напыления проводящего слоя приведены в таблице 2.

Таблица 2- Материалы, используемые для напыления проводящего слоя

Наименование материала

ГОСТ, ОСТ, ТУ

Документы, разрешающие применение материала

1 Хром электролитический рафинированный марки ЭРХ

ТУ 14-5-76

ОСТ ИГО.010.224

2 Медь вакуумплавленная МВ

бко.028.007 ТУ

ОСТ 107.750878.001

3 Никель

ГОСТ 2170

ОСТ 4.054.074

4.3 Технические требования к технологическим процессам напыления

1 Величина удельного поверхностного сопротивления резистивных слоёв должна соответствовать конструкторской документации и РД 107.460084.200.

2 Слои, получаемые по технологическим процессам, основные данные которых приведены в таблицах 3и 4, должны быть без царапин, вздутий, отслоений и трещин. Допускаются дефекты, обусловленные дефектами поверхности подложки, разрешёнными техническими условиями на подложке.

3 Отжиг испарителей производить непосредственно перед поведением операции напыления.

4 Платы с напылёнными слоями можно хранить в эксикаторе с силикагелем не более трёх сутиок или не более сорока суток с момента напыления в шкафу с защитной средой.

5 Толщина адгезионного подслоя должна быть от 0,03 до 0,08 мкм.

6 Толщина напылённого слоя меди на лицевой стороне подложки должна быть от 0,00 до 0,00 мкм.

7 При проведении технологических операций, подложки следует брать пинцетом на расстоянии не более двух ипллметров от края.

Таблица 3 - Данные по технологическим процессам напыления резистивных слоёв

Напыляемый материал

Метод напыления

Режимы напыления

Температура прогрева подложек до напыления, (?С)

Предварительный вакуум до нагрева, (мм.рт.ст.).

Давление в камере при напылении, (мм.рт.ст.).

Время напыления на заслонку, (мин).

Скорость вращения барабана (карусели), (об/мин).

Температура стабилизации резистивного слоя, (?С)

Время стабилизации резистивного слоя, (мин)

Температура подложки при разгерметизации камеры, (?С)

РС-3710

Ионно-плазменный

190-210

2·10-5

(4,5-7,5)·10-4

10-15

50-100

190-200

15

75-85

РС-3710

Термический

300-320

5·10-5

до 5·10-5

0,25

50-100

300-320

15

300-320

Хром

Термический

290-310

5·10-5

до 5·10-5

0,25

50-100

290-310

15

75-85

Нихром

Термический

290-310

5·10-5

до 5·10-5

0,25

50-100

290-310

15

75-85

МНКБ

Ионно-плазменный

190-210

2·10-5

(4,5-7,5)·10-4

15

50-100

190-210

15

75-85

Основные данные по технологическим процессам напыления резистивных слоёв приведены в таблице 3.

Основные данные по технологическим процессам напыления проводящих слоёв приведены в таблице 4.

Напыляемый материал

Метод напыления

Режимы напыления

Температура прогрева подложек до напыления, (?С)

Предварительный вакуум до нагрева, (мм.рт.ст.).

Давление в камере при напылении, (мм.рт.ст.).

Время напыления на заслонку, (мин).

Скорость вращения барабана (карусели), (об/мин).

Температура стабилизации резистивного слоя, (?С)

Время стабилизации резистивного слоя, (мин)

Температура подложки при разгерметизации камеры, (?С)

Хром

Термический

290-310

1·10-5

до 5·10-5

0,25

50-100

290-310

15

75-85

Медь

Термический

290-310

5·10-5

до 5·10-5

0,25

50-100

290-310

15

75-85

Никель

Термический

190-210

2·10-5

до 5·10-5

15

50-100

190-210

15

75-85

Примечание ? 1 - Режимы операций напыления уточняются технологом участка при пробном напылении

2 - Расплавление и обезгаживание меди проводятся до напыления хрома

3 - Разрыв во вре6мени между окончанием напыления хрома и началом напыления меди не более полутора минут

4.4 Технические данные

1 Количество материала, распыляемых за один технологический цикл:

ионным распылением -2

электроннолучевым напылением -3

2 Количество одновременно напыляемых подложек за один технологический цикл:

керамических (36x24x1,2) с выводами - 90 шт.

ситаловых (60x48x0,5) -50 шт.

3 Предельный вакуум в рабочей камере 5·10-6мм.рт.ст.

4 Время получения вакуума 5·10-6мм.рт.ст. - 90 мин (при разогретом паромасляном насосе).

5 Рабочий вакуум:

при электроннолучевом напылении 8·10-6мм.рт.ст.

при ионном распылении (с током мишени

не более 250 А ) 5·10-4мм.рт.ст.

6 Напуск газа и стабилизацию давления в рабочей камере в диапазоне 6·10-4мм.рт.ст. до 3·10-4мм.рт.ст.

7 Рабочий газ при ионном распылении - аргон.

8 Количество мишеней - 2.

9 Постоянное напряжение на мишени в режиме ионного распыления ~ 0...3 кВ.

10 Ток мишени при распылении постоянным током

0...400 А

11 Нагрев барабана с подложкой до температуры 3500С и стабилизация его температуры в диапазоне 100...3500С

12 Скорость барабана:

минимальная - 2 об/мин;

максимальная -20 об/мин.

13 Режимы работы установки:

ручной;

автоматический с управлением по времени; автоматический по времени с контролем параметров напыляемых слоев;

управление установкой от средств АСУТП.

14 Питание установки УВН-75П-1 осуществляется от сети переменного тока напряжением 380В, частота 50 Гц.

15 Электрическая мощность, потребляемая установкой при установившемся режиме не более 33 кВт.

16 Для эксплуатации установки необходимы следующие виды питания:

вода холодная - температура 15 + 10°С, давлением 2...4 кгс/см2; расход 650 л/час;

вода горячая - температура 80...90°С, давлением 2...4 кгс/см2; расход 250 л/час.

4.5 Принцип работы установки УВН-75П-1

1 Работа установки УВН-75П-1основана на распылении проводящего материала мишени постоянным ионным током и термическое испарении материала из электронных испарителей с кольцевая катодами. Нанесение материалов методом ионного распыления происходит на внешнюю сторону барабана с подложками, в нанесение материалов методом термического- на внутреннюю. Подложки находятся с обеих сторон барабана и поворачиваются после нанесения пленки на 1800, затем наносится пленка на другую сторону барабана.

2 На установке обеспечиваются в ручном и автоматическом (с управлением по времени или по времени с контролем параметров напыляемых слоев) режимах или при управлении от средств АСУТП следующие технологические операции:

откачка камеры рабочей до давления 6·10-6мм.рт.ст в ручном или автоматическом режимах;

напуск инертного газа в камеру рабочую до давления (6…3)·10-4мм.рт.ст и ВЧ очистка подложек (с напряжением ВЧ 300...500В);

очистка распыляемой мишени и нанесение пленок методом ионного распыления материала.

Питание распыляемых устройств (накала, анода, мишени) осуществляется от шкафа питания и управления;

откачка рабочей камеры до давления 6·10-6мм.рт.ст и нагрев барабана с подложкой до температуры 3500С;

разогрев первого испарителя и нанесение плёнок на подложку методом термического испарения по времени;

разогрев второго и третьего испарителей и нанесение тонких плёнок по времени или по прибору КСТ-1;

естественное охлаждение в вакууме до 800С, напуск инертного газа и выгрузка кассет вручную.

4.6 Схема установки УВН-75П-1

Рисунок 1 - Общий вид установки УВН-75П-1: 1 - прибор ионизационного контроля скорости роста толщины плёнок КСТ-1, 2 - прибор КС-2, 3 - генератор, 4 - установка вакуумной откачки УВН-70А-2, 5 - направляющая, 6 - камера рабочая

Установка УВН-75П-1 (Рисунок 1) состоит из базовой модели типа УВН-70А-2 поз.4, на которой смонтирована камера рабочая поз. 6, шкафа управления поз.7, двух шкафов питания в управления поз.8, прибора ионизационного контроля скорости и толщины пленок КСТ-1 поз 1, прибора КС- 2 поз. 2, генератора поз.З,

4.7 Напыление слоёв хрома, меди на лицевую и обратную стороны подложки

1. Включить установку согласно инструкции эксплуатации

2. Развакуумировать камеру

3. Загрузить испарители навесками напыляемых материалов.

Хром - 0,5 г. Допускается сплав МТЛ-30 - 0,5 г. Медь - 8,0 г.(в два испарителя по 4,0 г.)

4. Установить «свидетель» и проверить сопротивление в цепи «свидетеля»

5. Проверить работу заслонок

6. Закрепить подложки в подложкодержателях лицевой стороной к верху и установить их на карусель установки

Создать вакуум в рабочей камере (остаточное давление не более 5х10-5)

Включить привод вращения карусели (скорость вращения - 15 об/мин)

Прогреть подложки и выдержать при заданной температуре.

Температура 300?±10?С, выдержать 15±5 минут

10. Подать ток на первый испаритель меди и прогреть навеску до её полного расплавления. Ток - 300-400 А (при закрытой заслонке)

Повторить переход 10 для второго испарителя меди

Подать ток на испаритель хрома и прогреть навеску.

Ток - 300-400 А, время прогрева 8-10 секунд (при закрытой заслонке)

13. Открыть заслонку и произвести напыление плёнки хрома.

Ток - 300 - 400 А, удельное сопротивление контрольного образца Ом/? «свидетеля» задаётся технологом после пробного цикла напыления

Закрыть заслонку и прекратить подачу тока на испаритель

Подать ток на первый испаритель меди. Ток - 300 - 480 А

Открыть заслонку и произвести напыление меди до полного испарения навески. Момент полного испарения фиксируется по резкому падению тока.

Примечание. Интервал времени между напылениями хрома и меди не должен превышать 1 - 1,5 минуты

Закрыть заслонку и прекратить подачу тока на первый испаритель меди

Повторить переходы 15-17 для второго испарителя меди

Прекратить подачу тока на нагреватель подложек и охладить подложки до температуры 80?±5?С

Выключить привод вращения карусели

Развакуумировать камеру карусели

Загрузить испарители навесками для напыления обратных сторон

Хром - 0,5 г., меди - 18,0 г. (в два испарителя по 9,0 г.)

С помощью специального механизма перевернуть подложки в подлоржкодержателях

Создать вакуум в рабочей камере

Остаточное давление не более 5х10-5 мм рт. ст.

Выключить привод вращения карусели

Скорость вращения 15 об/мин

27. Прогреть подложки и выдержать при заданной температуре

Температура - 250?±10?С, время выдержки - 10 мин±1мин

28. Повторить переходы 10-21. В случае отсутствия металлизации на обратной стороне подложки переходы 22-27 не выполняются

Снять подложки пинцетом с подложкодержателей и поместить их в эксикатор с силикагелем. Хранить не более трёх суток с момента напыления

Провести визуальный контроль напылённых слоёв. На поверхности подложек не должно быть вздутий, отслоений, загрязнений, выплесков меди. Контролю подвергать 100% микроплат при увеличении не менее16х

Платы с напылёнными слоями передать на последующую операцию

4.8 Измерение удельного поверхностного сопротивления сплошных резистивных слоёв

Измерение проводится с помощью цифрового прибора измерения удельного поверхностного сопротивления полупроводниковых материалов ИУС-3 Дем 2.600.002, микроскопа стероскопического типа МБС-9 ТУЗ-3.1210-78. Используется также спирт этиловый ректификованный технический ГОСТ 18300-87; батист хлопчатобумажный ГОСТ 8474-80, силикагель технический ГОСТ 3956-76

Измерение удельного поверхностного сопротивления сплошных резистивных слоёв проводится следующим образом:

Протереть столик прибора, контактирующую головку, пинцет, напальчники батистом смоченным спиртом

Включить тумблер «сеть» и обеспечить прогрев прибора в течение 5 минут

Откинуть кожух на контактирующем устройстве прибора

Извлечь подложки из кассеты и поместить их на столик контактирующего устройства

Поставить рукоятку в положение «установ»

Совместить четыре отверстия прицела с местом измерения на подложке путём перемещения столика. Расстояние от зондов до края подложки должно быть не менее 5мм

Привести рукоятку в положение «измерение»

Найти диапазон измерения, на котором показания индикаторной лампы старшего разряда отличны от нуля и не гаснет индикаторная лампа младшего разряда. Производить с помощью переключения поддиапазонов

Записать установившееся показание прибора в рабочем журнале

Перевести рукоятку в положение «установ»

Замерить удельное поверхностное сопротивление в одной точке в центре на 100% подложек и в пяти точках (по углам и в центре) на одной подложке из партии. На обратной стороне подложки записать карандашом результаты измерений. Подложку следует считать забракованной при несоответствии удельного поверхностного сопротивления значению, указанному в КД

Примечание: замеры производить до термостабилизации и после термостабилизации плёнок

Поместить подложку на столик стереоскопического микроскопа. Контролю подвергать 100% микроплат при увеличении не менее 16х

Произвести контроль качества резистивного слоя. Слои, полученные вакуумным напылением, должны быть однородного цвета, без царапин, вздутий отслоений, пор, загрязнений и трещин

Допускаются: разнотонность напыленных слоёв, линии, обусловленные следами обработки подложек, не являющиеся царапинами напыленных слоёв, исчезающие при изменении направления освещённости

Рассортировать измеренные подложки по удельному сопротивлению, установить в кассету и поместить в эксикатор

Выключить прибор

16. Передать подложки на следующую операцию, заполнить технологический паспорт.

Выводы

Ознакомились со структурой предприятия и тематикой разработок. Рассмотрели особенности организации разработок изделий и технологической подготовки предприятия.

Ознакомились с нормативно-технической документацией: «Типовые технологические процессы микросборки плат тонкоплёночных» ОСТЧ ГО. 054.238, «Технология сборок микросборок общие требования» ОСТ 107.460091.004-88, «Техническое описание и инструкция по эксплуатации установки УВН-75П-1».

Ознакомились с работой отдела микроэлектроники: определить основные направления деятельности подразделения, ознакомиться с технической и научной базой отдела.

Произвели литературный обзор на тему «Тонкоплёночная технология изготовления ИС».

Произвели детальное изучение установки вакуумного напыления УВН-75П-1. Ознакомиться с возможностями и особенностями данной установки.

Изучили технологический маршрут напыления тонких плёнок на установке УВН-75П-1.

Произвели контроль тонкой резистивной плёнки на установке ИУС-3.

Список литературы

1. Минайчев В.Е. Нанесение пленок в вакууме. - М.: Высшая школа. 1989. - 156 с.

2. Степаненко И.П. Основы микроэлектроники. - М.: Лаборатория базовых знаний. 2004. - 488 с.

3. Вакуумная техника: Справочник / Е.С. Фролов и др. - М.: Машиностроении. 1992. - 62-65 с.

4. Розанов Л.И. Вакуумная техника. - М.: Высшая школа. 1990. - 239 с.

5. Курносов А.И., Юдин В.В. Технология производства полупроволниковых приборов. - М.: Высшая школа. 1974. - 400 с.

6. Метод термического испарения в вакууме [Электронный источник]. - http:// vak.htm

7. ОСТЧ ГО. 054.238 Типовые технологические процессы микросборки плат тонкоплёночных

8. ОСТ 107.460091.004-88 Технология сборок микросборок общие требования

9. Техническое описание и инструкция по эксплуатации установки УВН-75П-1

Страницы: 1, 2