скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Сигналы и процессы в радиотехнике (СиПРТ) скачать рефераты

Сигналы и процессы в радиотехнике (СиПРТ)

47

Министерство образования и науки Украины

Севастопольский национальный технический университет

КУРСОВАЯ РАБОТА

по дисциплине

«Сигналы и процессы в радиотехнике»

Выполнил студент: Гармаш М. А.

Группа: Р-33 д

Номер зачётной книжки: 212467

Допущен к защите

Защищен с оценкой

Руководитель работы

__________________

Агафонцева О. И.

__________________ « »__________ 2003 г. « »________ 2003 г.

Севастополь

2003

Содержание

1 ЗАДАНИЕ

2 ЗАДАНИЕ

3 ЗАДАНИЕ

4 ЗАДАНИЕ

5 ЗАДАНИЕ

6 ЗАДАНИЕ

7 ЗАДАНИЕ

ПЕРЕЧЕНЬ ССЫЛОК

Задание 1

Условие:

На безынерционный нелинейный элемент, ВАХ которого аппроксимирована кусочно - ломаной линией с крутизной линейного участка и напряжением отсечки подано напряжение .

Требуется:

Составить уравнение ВАХ нелинейного элемента.

Рассчитать и построить спектр выходного тока вплоть до десятой гармоники. Построить временные диаграммы входного напряжения, тока, протекающего через элемент и его первых четырёх гармоник.

Определить углы отсечки и напряжения смещения , при которых в спектре тока отсутствует: а) вторая гармоника; б) третья гармоника.

Найти угол отсечки и напряжение смещения , соответствующие максимуму амплитуды третьей гармоники для случая, когда .

Построить колебательную характеристику и описать её особенности. Найти напряжение смещения , соответствующее ее линейности.

Исходные данные приведены ниже:

S=45ма/А; U1=-3 В; U0=-2 В; Um =2 В.

Решение:

1. Воспользовавшись [1] составим уравнение ВАХ нелинейного элемента , которое определяется по формуле

(1.1)

Импульсы выходного тока можно рассчитать по формуле:

(1.2)

График изображен на рисунке 1.1

Рисунок 1.1 -

а) График ВАХ уравнения нелинейного элемента.

б) График выходного тока .

в) График входного напряжения.

2. Рассчитаем спектр выходного тока. Известно, что спектр тока рассчитывается по формуле:

, (1.3)

где - амплитуда -ой гармоники тока;

- амплитуда импульсов тока; n- номер гармоники (n=0,1,…,10);

- коэффициенты Берга,

-угол отсечки, определяемый по формуле:

. (1.3)

Подставив численные значения находим =2.094. Строим спектрограмму выходного тока используя [3]. Спектр показан на рисунке 1.2

(1.4) (1.6)

(1.5)

Рисунок 1.2 - Спектрограмма выходного тока

Теперь построим графики первых четырёх гармоник при помощи [3]:

Рисунок 1.3 - графики первых четырёх гармоник

3. Определим угол отсечки и смещение, при котором в спектре тока отсутствует n-я гармоника, что в соответствии с (1.3), можно определить путём решения уравнения :

. (1.7)

Результат показан ниже :

для 2 гармоники 1 = 0, 2 = 180;

для 3 гармоники = 0, 2 = 90, = 180;

Проведём суммирование гармоник:

Рисунок 1.4 - сумма первых десяти гармоник

4. Угол отсечки, соответствующий максимуму n-ой гармоники в спектре тока (при ) определяется по формуле:

(1.8)

Угол отсечки равен 60. Определим соответствующее напряжение смещения U0 из формулы(1.3).В итоге получим :

Подставляя численные значения получим U0= - 2В.

5. Колебательная характеристика нелинейного элемента определяется зависимостью амплитуды первой гармоники тока , протекающего через нелинейный элемент, от амплитуды входного напряжения:

.

Поскольку U1, то вид характеристики определяется по формуле:

. (1.9)

где- средняя крутизна, определяемая cоотношением:

: . (1.10)

Построим колебательную характеристику используя формулу (1.6) с учетом этой

Колебательная характеристика изображена на рисунке 1.5:

Рисунок 1.5 - Колебательная характеристика

Задание 2

Условие:

На вход резонансного умножителя частоты, выполненного на полевом транзисторе (рисунок 2) подано напряжение , где - частота сигнала. Нагрузкой умножителя является колебательный контур с резонансной частотой , ёмкостью и добротностью . Коэффициент включения катушки -. Сток - затворная характеристика транзистора задана в виде таблицы 3 и может быть аппроксимирована в окрестности полиномом:

.

Таблица 1 - Характеристика транзистора к заданию 2

, В

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

, мА

1,6

1,8

2,1

2,5

3

3,8

4,8

6

7,5

9

12

15

20

Требуется:

Построить ВАХ полевого транзистора. Изобразить временные диаграммы входного напряжения, тока стока и выходного напряжения умножителя.

Определить коэффициенты аппроксимирующего полинома .

Рассчитать спектр тока стока и спектр выходного напряжения умножителя. Построить соответствующие спектрограммы и найти коэффициент нелинейных искажений выходного напряжения.

Рассчитать нормированную АЧХ контура, построить её в том же частотном масштабе, что и спектрограммы, расположив их друг под другом.

Рассчитать индуктивность и полосу пропускания контура.

Исходные данные :

U0= -3,5 B, Um=3 B, f1=2 МГц C=120 пФ, P=0,2

Примечание: при расчётах положить равным 12 В.

Рисунок 2.1 - Схема удвоителя частоты.

Решение:

1. По значениям, приведенным в таблице 3, построим ВАХ полевого транзистора. Изобразим временные диаграммы входного напряжения:

U(t)=U0+Um*cos(wt) (2.1)

Рисунок 2.2 -

а) сток-затворная характеристика транзистора.

б) ток стока.

в) входное напряжение транзистора.

2. Коэффициенты определим, используя метод узловых точек. Выберем три точки (Напряжения соответственно равные ), в которых аппроксимирующий полином совпадает с заданной характеристикой:

u 1 = - 3,5В u 2= -0,5В u3=--7,5В

Затем, подставляя в полином значения тока, взятые из таблицы 3 и напряжения, соответствующие этим точкам, получают три уравнения.

(2.2)

Решая систему уравнений (2.2), используя [3], с помощью процедуры Given-Minerr , определим искомые коэффициенты полинома :

a0= 8,25 мА ; a1= 2,2 мА/В a2= 0,26 мА/В2

Проведем расчёт аппроксимирующей характеристики в рабочем диапазоне напряжений по формуле:

(2.3)

3. Спектр тока стока рассчитаем с использованием метода кратного аргумента [2] . Для этого входное напряжение подставим в аппроксимирующий полином и приведем результат к виду:

, (2.4)

где - постоянная составляющая; - амплитуды первой и второй гармоник соответственно;.После подстановки входного напряжения в полином, получим:

(2.5) (2.6)

(2.7)

Подставляя числовые значения коэффициентов a0, a1, a3 и амплитудное значение входного сигнала Um, получим :

I0= 9.45 I1=6.6 I2=1.2

Изобразим спектр тока стока на рисунке 2.4, используя [3]:

Рисунок 2.3 - Спектр тока стока

Рассчитаем cпектр выходного напряжения, которое создаётся током (2.4).Он будет содержать постоянную составляющую и две гармоники с амплитудами и начальными фазами и

, (2.8)

где - определим по формулам:

; (2.9)

; (2.10)

, (2.11)

где - напряжение источника питания;

- сопротивление катушки индуктивности;

- характеристическое сопротивление контура; - резонансная частота; - номер гармоники ().

Подставив числовые значения для f1, Ec=12, I0, Q, C, и рассчитав промежуточные значения:

= 331,573 Ом , r = 5,526 Ом; R0 = 19890 Oм; Fр =4МГц;

рассчитаем спектр выходного напряжения с помощью [3]:

U0 =11,99 В, U1 = 0.058 В , U2= 0.955 В.

Изобразим спектр амплитуд и фаз выходного напряжения на рисунке 2.5:

Рисунок 2.4 - Спектр амплитуд и фаз выходного напряжения

Определим коэффициент нелинейных искажений выходного напряжения по следующей формуле:

4. Найдем- нормированную амплитудно-частотную характеристику контура, которую рассчитаем по формуле:

(2.12)

Изобразим нормированную амплитудно-частотную и фазо-частотную характеристики контура на рисунке 2.6, используя [3]:

Рисунок 2.5 - Амплитудно-частотная и фазо-частотная характеристики контура

5. Используя формулу [1] для индуктивности контура:

L=/2**fp, (2.13)

найдём индуктивность контура L= 520.8 мкГн.

Графическим способом на уровне 0.707 определяем полосу пропускания, которая равна f= 1,3105 кГц.

Задание 3

Условие:

На вход амплитудного детектора вещательного приёмника, содержащего диод с внутренним сопротивлением в открытом состоянии и - фильтр, подаётся амплитудно-модулированный сигнал и узкополосный шум с равномерным энергетическим спектром в полосе частот, равной полосе пропускания тракта промежуточной частоты приёмника и дисперсией .

Требуется:

Привести схему детектора и определить ёмкость фильтра нижних частот.

Рассчитать дисперсию входного шума и амплитуду несущего колебания .

Определить отношение сигнал/помеха на входе и выходе детектора (по мощности) в отсутствии модуляции.

Рассчитать постоянную составляющую и амплитуду переменной составляющей выходного сигнала.

Построить на одном рисунке ВАХ диода, полагая напряжение отсечки равным нулю, а также временные диаграммы выходного напряжения, тока диода и напряжения на диоде.

Исходные данные приведены ниже:

R1=20 Ом ; R=10 кОм ; M=30% ; W0=4.6

Решение:

1. На рис.3.1 изобразим схему детектора:

Рисунок 3.1 - Схема детектора.

Постоянную времени фильтра детектора выберем из условия

, (3.1)

где - частота несущего колебания;

- максимальная частота в спектре модулирующего сигнала.

Для того чтобы удовлетворить условию (3.1) следует выберем как среднее геометрическое

. (3.2)

где кГц (промежуточная частота),

кГц.

Рассчитав по формуле (3.2),находим, что =4 мкс .Далее определим ёмкость фильтра по формуле:

. (3.3)

Расчет производим в [M] и находим ,что C= 0,4 нФ.

2. Дисперсию входного шума определяют по формуле

, (3.4)

где - энергетический спектр шума.

Интегрировать будем ,по условию задачи, в полосе частот . ,

поскольку спектр шума равномерен, а за пределами этой полосы - равен нулю. Определим дисперсию входного шума по формуле (3.4) с помощью [3]:

Dx=0.125 В2.

Вычислим амплитуду несущего колебания в соответствии с задачей по формуле :

. (3.5)

Подставив исходные значения получим: =3.537 В.

3. Определяем отношение сигнал/помеха на входе (по мощности) детектора :

. (3.6)

Подставив исходные значения получим:: h=50

Определяем отношение сигнал/помеха на выходе детектора по формуле :

, (3.7)

где - среднеквадратическое отклонение входного шума;

- постоянная составляющая выходного напряжения детектора при одновременном воздействии сигнала (несущей) и шума. Сначала находим СКО=0.354 В. Далее определяем постоянную составляющую формуле

, (3.8)

где -функции Бесселя нулевого и первого порядков (модифицированные) соответственно. Производим вычисления с помощью [3] находим =3,555 В. Подставляем полученные значения , СКО находим, что сигнал/помеха на выходе равен:

Страницы: 1, 2