скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Розробка і оформлення конструкторської документації гібридних інтегральних мікросхем скачать рефераты

p align="left">- мати мінімум дефектів, які впливають на якість отриманої мікросхеми;

- повинен мати високу теплопровідність, для ефективного відводу тепла від елементів і активних компонентів;

- стійкість до хімічних речовин, які використовують в усіх технологічних процесах, при виготовленні мікросхеми;

- матеріал повинен мати високий питомий опір;

- повинен мати близькі коефіцієнти термічного розширення підладки і нанесених плівок;

1.4 Вибір корпуса інтегральної мікросхеми

Для гібридних мікросхем найчастіше використовують три види корпусів - металоскляний квадратний чи прямокутний, металоскляний циліндричний [4].

В залежності від конструкції і матеріалу корпуси мікросхем герметизують різними методами. Так, наприклад, металосклянні і металокерамічні герметизують сваркою або пайкою, керамічні - пайкою, а пластмасові - вакуумною заливкою, листовим пресуванням або склеюванням.

Головна перевага металоскляного корпусу це забезпечення надійної роботи мікросхеми в умовах підвищеної вологості і в широкому температурному інтервалі.

В металоскляних корпусах кришка і частково дно формуються з металу. На дні знаходиться скляна пластина, в яку впаяно виводи. Кришка і дно з'єднуються по периметру за допомогою сварки.

Температурні коефіцієнти лінійного розширення скляної пластини (основи) і виводів повинні бути найближчими, інакше при нагрівані корпусу це може призвести до порушення герметичності між виводами і скляною пластиною і навіть до руйнування скла. Тому при проектуванні і виготовленні металоскляних корпусів на підбір цих коефіцієнтів приділяють велику увагу [4].

Найчастіше для виготовлення корпусів використовують сплави ТКР-29НК, 29НК-В4; сталь Х18Н10Т; скло С48-2, С52-1

1.5 Переваги і недоліки гібридних інтегральних мікросхем

Переваги:

1. Гібридна технологія дозволяє відносно швидко створювати електронні прилади, які виконують достатньо складні функції.

2. Обладнання для виготовлення гібридної інтегральної мікросхеми значно дешевше ніж для виготовлення напівпровідникових інтегральних мікросхем.

3. Перевагою гібридних технологій є більший відсоток виходу працездатних мікросхем 60-80%, порівняно з 5-30% для напівпровідникових інтегральних мікросхем. Брак, який виникає при виготовленні гібридних інтегральних мікросхем часто можна усунути.

4. Підладка гібридної інтегральної мікросхеми виготовлена з високоякісного діелектричного матеріалу, тому через малі паразитні ємності і гарну взаємну ізоляцію елементів і компонентів, гібридні інтегральні мікросхеми мають кращі високочастотні і імпульсні електричні властивості, тому у високочастотному і надвисокочастотному діапазоні переважно використовуються гібридні інтегральні мікросхеми [5].

Гібридні інтегральні мікросхеми мають вищу радіаційну стійкість.

Недоліки:

1. Мала надійність, через те, що використовується навісний монтаж.

2. Більші габарити і вага.

Неможливість отримання активних елементів в єдиному технологічному циклі з пасивними [5].

1.6. Технології виробництва ГІМС

Напівпровідникова мікросхема -- це така мікросхема, де всі елементи і між елементні з'єднання виконані на одному напівпровідниковому кристалі (наприклад, кремнію, германія, арсеніду галію).

- Товсто-плівкова інтегральна схема;

- Тонко-плівкова інтегральна схема.

Гібридна мікросхема -- крім напівпровідникового кристалу містить деяку кількість безкорпусних діодів, транзисторів й інших електронних компонентів, поміщених в один корпус.

Вид оброблюваного сигналу:

- Аналогові

- Цифрові

- Аналого-цифрові

Аналогові мікросхеми -- вхідні і вихідні сигнали змінюються за законом безупинної функції в діапазоні від позитивного до негативної напруги живлення [5].

Цифрові мікросхеми -- вхідні і вихідні сигнали можуть мати два значення: логічний чи нуль логічна одиниця, кожному з який відповідає визначений діапазон напруги. Наприклад, для мікросхем ТТЛ-логіки при живленні +5 В діапазон напруги від 0 до 0,8 В відповідає логічному нулю, а діапазон від 2,4 до 5 В відповідає логічній одиниці. Для мікросхем ЕСЛ-логіки при живленні 5,2 В: логічна одиниця -- це 0,8 - 1,03 В, а логічний нуль -- це 1,6 - 1,75 В.

Аналого-цифрові мікросхеми сполучають у собі форми цифрової й аналогової обробки сигналів. В міру розвитку технологій одержують усе більше поширення.

Основним елементом аналогових мікросхем є транзистори (біполярні чи польові). Різниця в технології виготовлення транзисторів істотно впливає на характеристики мікросхем. Тому нерідко в описі мікросхеми вказують технологію виготовлення, щоб підкреслити тим самим загальну характеристику властивостей і можливостей мікросхеми. У сучасних технологіях поєднують технології біполярних і польових транзисторів, щоб досягти поліпшення характеристик мікросхем [5].

- Мікросхеми на уніполярних (польових) транзисторах -- найбільш економічні (по споживанню струму):

- КМОП-логіка (комплементарна МОП-логіка) -- кожен логічний елемент мікросхеми складається з пари взаємодоповнюючих (комплементарних) польових транзисторів (n-МОП і p-МОП).

Мікросхеми на біполярних транзисторах:

- РТЛ -- резисторно-транзисторна логіка (застаріла, замінена на ТТЛ);

- ДТЛ -- діод-транзисторна логіка (застаріла, замінена на ТТЛ);

- ТТЛ -- транзисторно-транзисторна логіка -- мікросхеми зроблені з біполярних транзисторів із багато-емітерними транзисторами на вході;

- ТТЛШ -- транзисторно-транзисторна логіка з діодами Шотки -- удосконалена ТТЛ, у якій використовуються біполярні транзистори з ефектом Шотки.

- ЕСЛ -- еміттерно-звязана логіка -- на біполярних транзисторах, режим роботи яких підібраний так, щоб вони не входили в режим насичення, -- що істотно підвищує швидкодію.

КМОП і ТТЛ (ТТЛШ) технології є найбільш поширеними логіками мікросхем. Де небхідно заощаджувати споживання струму, застосовують КМОП-технологію, де важливіше швидкість і не потрібно економія споживаної потужності застосовують ТТЛ-технологію. Слабким місцем КМОП-мікросхем є уразливість від статичної електрики -- досить торкнутися рукою висновку мікросхеми і її цілісність уже не гарантується. З розвитком технологій ТТЛ і КМОП мікросхеми по параметрах зближаються і як наслідок, наприклад, серія мікросхем 1564 -- зроблена за технологією КМОП, а функціональність і розміщення в корпусі як у ТТЛ технології [5].

Мікросхеми, виготовлені по ЕСЛ-технології є найшвидшими, але найбільш енергоспоживаючими і застосовувалася при виробництві обчислювальної техніки, коли найважливішим параметром була швидкість обчислення. У СРСР самі продуктивні ЕОМ типу ЄС106х виготовлялися на

ЕСЛ-мікросхемах. Зараз ця технологія використовується рідко [5].

Очищення підкладок перед напилюванням виконують для видалення механічних і жирових забруднень. Очищення проводять на двох взаємопов'язаних напівавтоматах вібраційного хімічного очищення, камери яких заповнюють розчином перекису водню. Підкладки поміщають у касету і завантажують у центрифугу, де вони очищуються від механічних домішок. Потім підкладки перекладають в робочу камеру напівавтомата для промивання. На другому напівавтоматі відбувається очищення підкладок у перекисно-аміачному розчині та їх промивання після очищення.

Напилювання резистивного шару виконують іоноплазмовим методом, який має такі переваги у порівнянні з методом термічного випаровування у вакуумі: можливість автоматизації процесу напилювання; відсутність наважок; тривалий термін служби мішені; високе відтворення тонкоплівкових резисторів, а також високі електрофізичні властивості напилених шарів; підвищена адгезія напиленого шару з підкладкою [5].

Сутність процесу напилювання електропровідних шарів (ванадій-мідь і ванадій-алюміній) полягає в осадженні на підкладку атомів вихідного матеріалу, що випаровуються в результаті впливу високої температури й електричного поля. Напилювання ведеться на установці "УВН-2-М2" у два етапи: на першому етапі проводиться напилювання шару з ванадію; на другому - напилювання провідного шару з міді чи алюмінію.

Виготовлення й очищення наважок, застосовуваних для напилювання провідних шарів, проводиться на спеціально обладнаному робочому місці. Розчини для очищення наважок (для ванадія, міді і алюмінію, обробленого в лузі, - розчин азотної кислоти в деіонізованій воді, для алюмінію - розчин гідрату окису калію в деіонізованій воді) готують оператори. Саме очищення ведеться у витяжній шафі занурюванням у ванну з фторопласта, армованого титановою сіткою [5].

Завдяки простоті, гнучкості і постійному удосконаленню технологія

Товсто-плівкових мікросхем усе ширше застосовується у виробництві. Із застосуванням електронно-обчислювальних машин і створенням гнучких автоматизованих систем виробництва, переходом до безлюдного виробництва досягається вивільнення значної кількості робочих місць, поліпшення умов праці і підвищення культури виробництва.

У вітчизняній практиці використовуються автоматизовані комплекси, побудовані на агрегатно-модульному принципі. Кожний автоматизований модуль оснащений завантажувально-розвантажувальними пристроями. Устаткування, об'єднане в комплекс, дозволяє виготовляти 600 мікрозборок за 1 годину. Технологічне устаткування, що легко вбудовується в автомати-чні лінії: автомати трафаретного друку, лазерної підгонки і контролю, роботизовані робочі місця для укладання електрорадіоелементів на підкладки, автоматичні завантажувально-розвантажувальні пристрої, успішно застосовується при виготовленні гібридних інтегральних мікросхем невеликими партіями, а за необхідності його легко перебудувати на випуск нових виробів. Тому технологію товсто-плівкових мікросхем і мікрозборок застосовують для дрібносерійних і дослідних партій [5].

Розділ 2. Розробка конструкторської документації ГІМС

2.1 Розробка комутаційної схеми

Розробка комутаційної схеми з'єднань включає в себе перетворення даної електричної схеми з метою складання схематичного плану розміщення елементів і з'єднань між ними на платі мікросхеми.

При проектуванні топології ГІМС необхідно зважити на те, що:

-розмір підкладки вибирають відповідно до табл.2; В даній роботі він 12*8.

-периферійні контактні площадки розташовують по чотирьох чи двох протилежних боках підкладки (для лінійних ГІМС допускається розміщення з одного боку).

-кожна гібридна ІМС повинна мати ключ-збільшену контактну площадку чи спеціальний знак, розміщений в нижньому лівому куту на більшому боці підкладки; ключ креслять в процесі проектування топології. В роботі ключ поставлений у верхньому лівому куті.

Мінімальна ширина провідника-50мкм.

Провідники розводяться таким чином, щоб вони не перетиналися в одній площі. Якщо це неможливо, тоді ставляться перемички. В даній схемі перемичок немає, виводи не перетинаються.

Мінімальна ширина плівкових провідників 0.05 мм.

Мінімальна відстань від дротяного провідника чи виводу до краю контактної площини, чи до краю плівкового провідника, не захищеного ізоляцією 0.2 мм.

Відстань від кристала до контактної площадки не менше 0.4 мм. Розміри контактної площадки min 0.4*0.4. Форма прямокутна.

Відстань. Мінімальна відстань між контактними площадками, доріжками і резисторами-0.2 мм.

Мінімально допустима відстань від плівкових елементів до краю плати 200 мкм (резистори, доріжки).

Відстань від кристала до контактної площадки не менше 0.4 мм.

Контактні площадки розташовують на відстані не менше 500 мкм від краю підкладки.

Рисунок 2. Комутаційна схема

2.2 Розрахунок плівкових та навісних елементів

Для розробки ГІМС нам дана схема електрично-принципова. Схема електрично принципова - це документ, який визначає повний склад електричних елементів і електричного зв'язку між ними. Вона дає детальну уяву про принципи роботи нашого виробу. По схемі розроблюють конструкцію, а також використовують її при виготовленні і експлуатації виробу.

За електричною схемою розробляється мікросхема. Мікросхема-пристрій розміром порядку 1мм2 і менше; зазвичай виконує яку-небудь самостійну функцію, наприклад складання поданих на неї електричних імпульсів, і називається інтегральною. Окремі елементи мікросхеми, наприклад провідники, резистори, можуть бути утворені шляхом нанесення плівок на діелектричну пластинку-підкладку (плівкові елементи). Це плівкова технологія виготовлення. Інші елементи, які називаються навісними, наприклад напівпровідникові діоди і транзистори, приклеюють і припаюють до підкладки. При поєднанні тих і інших елементів утворюється мікросхема, яка називається гібридною. В даній роботі на ГІМС будуть такі елементи: два конденсатори, три резистора і навісна мікросхема 740 УД5-1.

Електрична принципова схема по вказаному завданню на форматі А4-схема і перелік елементів схеми. Відстань таблиці переліку від верхньої рамки не регламентовано, тому можна витягнути схему на всю довжину листа, якщо треба, а таблицю змістити вниз.

Відстань між умовними позначеннями не потрібно занадто збільшувати, розміщення елементів повинно визначатись зручністю читання схеми, їх можна креслити з поворотом на кути кратні 900. Електричні зв'язки між елементами зображують найкоротшими лініями мінімальною кількістю перетинів, на відстані не менше 3 мм одне від одного. Входи, виходи та контакти розташовують справа і зліва. Порядок запису в перелік елементів схеми, спочатку резистори, потім інші елементи в алфавітному порядку умовних позначень.

В межах кожної групи елементів, ті які входять в неї записують під загальним заголовком, по зростанню порядкових номерів. В кінці групи рекомендується пусту стрічку для доповнень.

Далі розрахуємо компоненти ГІМС, розведемо схему. Компонентами ГІМС є діоди та діодні матриці, транзистори, конденсатори, трансформатори та ін. Компоненти можуть мати жорсткі та гнучкі виводи і спосіб монтажу компонентів на плату повинен забезпечити фіксацію положення компонента і виводів, збереження його цілісності, параметрів і якостей, стійкість до вібрацій та ударів. Перейдемо до розрахунку конкретної схеми.

Користуючись заданими параметрами (U=5 В, табл. 1), розрахуємо площі плівкових резисторів.

Почнемо розрахунки з визначення потужності P і сили струму I, за формулами [4]:

; ; (2.1)

Напруга U для схеми дорівнює 9 В

Для R1

(Вт)

Для R2, R3:

(Вт)

Таблиця 2-Параметри елементів схеми

Поз.позначення

Тип елементу і його номінал

Кількість

Примітки

С2

Конденсатор К10-17-ІВ...0,01 мкФ (навісний елемент)

1

В=1,4 мм; L=1,9 мм

Рис.6

С1

220 пФ 15%(плівковий елемент)

1

D1

Мікросхема 740 УД-5-І (навісний елемент)

1

Рис.5

Резистори (плівкові елементи)

R1

6кОм 10%

1

R2, R3

26кОм 10%

2

(mА)

Розрахуємо геометричні розміри резисторів:

Страницы: 1, 2, 3