скачать рефераты

скачать рефераты

 
 
скачать рефераты скачать рефераты

Меню

Разработка программного обеспечения для голосового управления трехмерными моделями функционирования промышленных роботов скачать рефераты

Разработка программного обеспечения для голосового управления трехмерными моделями функционирования промышленных роботов

РЕФЕРАТ

Метою дослідження є розробка програмного забезпечення для голосового керування тривимірними моделями функціонування промислових роботів.

Основними задачами є аналіз методів цифрової обробки звукових сигналів, аналіз систем розпізнання мовлення, розробка програмного забезпечення для розпізнання команд керування промисловим роботом.

Розглядаються питання обробки звукової інформації, її аналізу та фільтрації. Проаналізовані методи реалізації систем розпізнання мовлення.

Реалізовано програмне забезпечення для запису, відтворення й аналізу звукової інформації. Програмне забезпечення розроблене в середовищі розробки програмного забезпечення Visual C++ 6.0 з використанням мультимедійної бібліотеки mmsystem, а також графічної бібліотеки OpenGL.

СПЕКТРАЛЬНИЙ АНАЛІЗ, ДИСКРЕТНЕ ПЕРЕТВОРЕННЯ ФУР'Є, MMSYSTEM, ГРАФІЧНА БІБЛІОТЕКА, OPENGL, СЕРЕДОВИЩЕ ПРОГРАМУВАННЯ, VISUAL C++.

РЕФЕРАТ

Целью исследования является разработка программного обеспечения для голосового управления трехмерными моделями функционирования промышленных роботов.

Основными задачами является анализ методов цифровой обработки звуковых сигналов, анализ систем распознавания речи, разработка программного обеспечения для распознавания команд управления промышленным роботом.

Рассматриваются вопросы обработки звуковой информации, её анализа и фильтрации. Проанализированы методы реализации систем распознавания речи.

Реализовано программное обеспечение для записи, воспроизведения и анализа звуковой информации. Программное обеспечение разработано в среде разработки программного обеспечения Visual С++ 6.0 с использованием мультимедийной библиотеки mmsystem, а также графической библиотеки OpenGL.

СПЕКТРАЛЬНЫЙ АНАЛИЗ, ДИСКРЕТНОЕ ПРЕОБРАЗОВАНИЕ ФУРЬЕ, MMSYSTEM, ГРАФИЧЕСКАЯ БИБЛИОТЕКА, OPENGL, СРЕДА ПРОГРАММИРОВАНИЯ, VISUAL С++.

THE ABSTRACT

Software development for the voice control by the three-dimensional models of industrial robots functioning is a purpose of research.

Basic tasks are the analysis of the digital sounds signal processing methods, analysis of the speech recognition systems, software development for recognition of control commands by an industrial robot.

The questions of sound information processing, of its analysis and filtration are examined. The methods of implementation of the speech recognition systems are analyzed.

Software for a record, reproducing and analysis of sound information is implemented. Software is developed in the environment of Visual C++ 6.0 with the using of mmsystem multimedia library, and also OPENGL graphic library.

SPECTRAL ANALYSIS, DISCRETE TRANSFORMATION OF FURJE, MMSYSTEM, GRAPHIC LIBRARY, OPENGL, PROGRAMMING ENVIRONMENT, VISUAL C++.

Перечень условных сокращений, обозначений, терминов

ПР - промышленный робот

ЭВМ - электронно вычислительная машина

ДПФ - дискретное преобразование Фурье

БПФ - быстрое преобразование Фур'е

ЛП - линейное предсказание

PCM - Pulse-Code Modulation

Содержание

Введение

1. Цифровая обработка сигналов и её использование в системах распознавания речи

Дискретные сигналы и методы их преобразования

Основы цифровой фильтрации

Особенности акустической фонетики и её* учёт при обработке речевых сигналов

Обработка речевого сигнала во временной области

2. Реализация систем распознавания речи

Гомоморфная обработка речи

Кодирование речи на основе линейного предсказания

Цифровая обработка речи в системах речевого общения человека с машиной

3. Разработка программного обеспечения для распознавания команд управления промышленным роботом

Реализация интерфейса записи и воспроизведения звукового сигнала в операционной системе Microsoft Windows

Реализация программного обеспечения для записи, воспроизведения и анализа звукового сигнала

Реализация функции распознавания голосовых команд голосового управления промышленным роботом

3.4 Реализация голосового управления трёхмерными моделями промышленного робота

Выводы

Перечень ссылок

Приложение А. Элементы текстов программы

Введение

Распознавание человеческой речи является одной из сложных научно-технических задач. В настоящее время пользователями вычислительных машин и средств, оснащенных вычислительными машинами, становятся люди, не являющиеся специалистами в области программирования. Проблема речевого управления возникла, кроме того, в связи с тем, что в некоторых областях применения речь стала единственно возможным средством общения с техникой (в условиях перегрузок, темноты или резкого изменения освещенности, при занятости рук, чрезвычайной сосредоточенности внимания на объекте, который не позволяет отвлечься ни на секунду, и т.д.). Хотя в этой области и достигнуты существенные успехи, тем не менее, системы распознавания еще весьма далеки по своим возможностям от человеческих.

Проблема реализации речевого диалога человека и технических средств - актуальная задача современной кибернетики.

Задача машинного распознавания речи привлекает внимание специалистов уже очень давно. Тем не менее, продвинуться далеко в этом направлении пока не удалось. Чисто формально процесс распознавания речи можно описать буквально в нескольких фразах. Аналоговый сигнал, генерируемый микрофоном, оцифровывается, и далее в речи выделяются так называемые фонемы, то есть элементарные фрагменты, из которых состоят все произносимые слова. Затем определяется, какое слово, какому сочетанию фонем соответствует, и строится соответствующий словарь. Распознать слово - значит найти его в этом словаре по произнесенному сочетанию фонем. По мере развития компьютерных систем становится все более очевидным, что использование этих систем намного расширится, если станет возможным использование человеческой речи при работе непосредственно с компьютером, и в частности станет возможным управление машиной обычным голосом в реальном времени, а также ввод и вывод информации в виде обычной человеческой речи.

В настоящее время всё более актуальным становится управление роботом при помощи голосовых команд. Однако создание программного обеспечения для голосового управления промышленным роботом предусматривает проведение экспериментов во время разработки программы на всех этапах разработки. Проведение таких экспериментов, обеспечивающих устранение недостатков, ошибок программы, является экономически невыгодным в условиях промышленного производства и приводит к повышению стоимости разработки и отладки программного обеспечения. Для уменьшения затрат на создание программного обеспечения целесообразно разработать программу, которая обеспечит трёхмерное моделирование голосового управления промышленным роботом, что приводит к необходимости проведения экспериментов в условиях производства лишь на последнем этапе разработки программного обеспечения.

Темой данного исследования является голосовое управление трёхмерными моделями функционирования промышленных роботов. Его задачами является анализ методов цифровой обработки звуковых сигналов, анализ систем распознавания речи, разработка программного обеспечения для распознавания команд управления промышленным роботом.

1. Цифровая обработка сигналов и её использование в системах распознавания речи

1.1 Дискретные сигналы и методы их преобразования

Акустическое колебание, формируемое в речевом тракте человека, является непрерывно изменяющимся процессом. С математической точки зрения его можно описать функцией непрерывного времени 1. Аналоговые (непрерывные во времени) сигналы будут обозначаться через ха(1). Речевой сигнал можно представить и последовательностью чисел. Последовательности обозначаются через х(п). Если последовательность чисел представляет собой последовательность мгновенных значений, аналогового сигнала, взятых периодически с интервалом Т, то эта операция дискретизации обозначается через ха(пТ). На рис. 1.1 показан пример речевого сигнала в аналоговой форме и в виде последовательности отсчетов, взятых с частотой дискретизации 8 кГц.

32 мс

Г

^

.„...„.„ .!-«*-¦- и-1" ".|||||11||||И..|||

...., 256 отсчё!

|||| ¦

гов

\

||| г

1

>

Рис. 1.1 - Представление речевого сигнала

Для удобства даже при рассмотрении дискретных сигналов иногда на графике будет изображается непрерывная функция, которая может рассматриваться как огибающая последовательности отсчетов. При изучении систем цифровой обработки речи требуется несколько специальных последовательностей. Единичный отсчет или последовательность, состоящая из одного единичного импульса, определяется как

(1.1)

Последовательность единичного скачка имеет вид

(1.2)

Экспоненциальная последовательность

(1.3)

Если а - комплексное число, т. е. , то

(1.4)

Если z=1 и , х(n) - комплексная синусоида; если . х(n) -действительное; если z<1 и , то х(n) - экспоненциально-затухающая осциллирующая последовательность. Последовательности этого типа часто используются при представлении линейных систем и моделировании речевых сигналов.

Обработка сигналов включает преобразование их в форму, удобную для дальнейшего использования. Таким образом, предметом интерес представляют дискретные системы или, что то же самое, преобразования входной последовательности в выходную. Подобные преобразования далее изображаются на структурных схемах. Многие системы анализа речевых сигналов разработаны для оценивания переменных во времени параметров по последовательности мгновенных значений речевого колебания. Подобные системы имеют многомерный выход, т. е. одномерная последовательность на входе, представляющая собой речевой сигнал, преобразуется в векторную последовательность на выходе.

При обработке речевых сигналов особенно широкое применение находят системы, инвариантные к временному сдвигу. Такие системы полностью описываются откликом на единичный импульс, Сигнал на выходе системы может быть рассчитан по сигналу на входе и отклику на единичный импульс h(n) с помощью дискретной свертки

(1.5a)

где символ * обозначает свертку. Эквивалентное выражение имеет вид

(1.5б)

Линейные системы, инвариантные к временному сдвигу, применяются при фильтрации сигнала и, что более важно, они полезны как модели речеобразования.

Анализ сигналов и расчет систем значительно облегчаются при их описании в частотной области. В этой связи полезно кратко остановиться на представлении сигналов и систем в дискретном времени с использованием преобразования Фурье и z-преобразования [1].

1.1.1 Прямое и обратное г-преобразование

Прямое и обратное г-преобразование последовательности определяется двумя уравнениями:

(1.6a)

(1.6б)

Прямое z-преобразование х(n) определяется уравнением (1.6а). В общем случае Х(z) - бесконечный ряд по степеням z-1; последовательность х(n) играет роль коэффициентов ряда. В общем случае подобные степенные ряды сходятся к конечному пределу только для некоторых значений z. Достаточное условие сходимости имеет вид

(1.7)

Множество значений, для которых ряды сходятся, образует область на комплексной плоскости, известную как область сходимости. В общем случае эта область имеет вид [2]

(1.8)

1.1.2 Преобразование Фурье

Описание сигнала в дискретном времени с помощью преобразование Фурье задаётся в виде

(1.9a)

(1.9б)

Эти уравнения представляют собой частный случай уравнений (1.6а,б).

Преобразование Фурье получается путём вычисления z -преобразования на единичной окружности, т. е. подстановкой . Частота может быть интерпретирована как угол на z - плоскости. Достаточное условие существования преобразования Фурье можно получить, подставляя в (1.7)

(1.10)

Важная особенность преобразования Фурье последовательности состоит в том, что оно является периодической функцией со с периодом 2к. С другой стороны, поскольку представляет собой значение Х(z) на единичной окружности, оно должно повторяться после каждого полного обхода этой окружности, т. е. когда со изменится на рад [1].

1.1.3 Дискретное преобразование Фурье

Как и в случае аналоговых сигналов, если последовательность периодическая с периодом N, т. е.

(1.11)

то х(n) можно представить в виде суммы синусоид, а не в виде интеграла. Преобразование Фурье для периодической последовательности имеет вид

(1.12а)

(1.12б)

Это точное представление периодической последовательности. Однако, основное преимущество данного описания заключается в возможности несколько иной интерпретации уравнений (1.12). Рассмотрим последовательность конечной длины х(n), равную нулю вне интервала B этом случае z-преобразование имеет вид

(1.13)

Если записать X(z) в N равноотстоящих точках единичной окружности, т. е. , k= 0, 1,…,N-1, то получим

(1.14)

Если при этом построить периодическую последовательность в виде бесконечного числа повторений сегмента х(n),

(1.15)

то отсчеты (), как это видно из (1.12а) и (1.14), будут представлять собой коэффициенты Фурье периодической последовательности х(n) в (1.15). Таким образом, последовательность длиной N можно точно описать с помощью дискретного преобразования Фурье (ДПФ) в виде

(1.16)

(1.17)

Следует иметь в виду, что все последовательности при использовании ДПФ ведут себя так, как если бы они были периодическими функциями, т. е. ДПФ является на самом деле представлением периодической функции времени, заданной (1.15). Несколько иной подход при использовании ДПФ заключается в том, что индексы последовательности интерпретируются по модулю N. Это следует из того факта, что если х(n) имеет длину N, то

Введение двойных обозначений позволяет отразить периодичность, присущую представлению с помощью ДПФ. Эта периодичность существенно отражается на свойствах ДПФ. Очевидно, что задержка последовательности должна рассматриваться по модулю N. Это приводит, например, к некоторым особенностям выполнения дискретной свертки.

Дискретное преобразование Фурье со всеми его особенностями является важным способом описания сигналов по следующим причинам: 1) ДПФ можно рассматривать как дискретизированный вариант z -преобразования (или преобразования Фурье) последовательности конечной длительности; 2) ДПФ очень сходно по своим свойствам (с учетом периодичности) с преобразованием Фурье и z-преобразованием; 3) N значений Х(k) можно вычислить с использованием эффективного (время вычисления пропорционально NlogN) семейства алгоритмов, известных под названием быстрых преобразований Фурье (БПФ).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11